检测视频/音频流数据包流,用于非侵入式QoS/QoE监控

S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi
{"title":"检测视频/音频流数据包流,用于非侵入式QoS/QoE监控","authors":"S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi","doi":"10.1109/IWMN.2017.8078403","DOIUrl":null,"url":null,"abstract":"Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.","PeriodicalId":201479,"journal":{"name":"2017 IEEE International Workshop on Measurement and Networking (M&N)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detection of video/audio streaming packet flows for non-intrusive QoS/QoE monitoring\",\"authors\":\"S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi\",\"doi\":\"10.1109/IWMN.2017.8078403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.\",\"PeriodicalId\":201479,\"journal\":{\"name\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2017.8078403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Measurement and Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2017.8078403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

流媒体应用程序产生了相当大一部分网络流量,并代表了网络提供商收入的很大一部分。对用户满意度的承诺可以用不同的概念来概括,内容提供商强调体验质量(QoE),而网络提供商更关注服务质量(QoS)。测量QoS参数并理解两者之间的关系对于实现网络调优以增强QoE至关重要。分析实际的流动态和检测损伤需要区分音频和视频数据包流的能力。为此,我们提出了一种基于支持向量机实现的数据包流特征研究的跨层分析方法。本文介绍了一项由nTh HighSee(一种非侵入性QoS监控工具)支持的研究结果,其中对视频/音频检测方法进行了调查和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of video/audio streaming packet flows for non-intrusive QoS/QoE monitoring
Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A crowdfunded personal air quality monitor infrastructure for active life applications An investigation on an interference filtering technique for array diagnosis using sparsity Evaluation of communication latency in industrial IoT applications Roughness assessment of reflector surface via near-field data Measurement system with leaky coaxial cables operating as distributed antennas for UHF-RFID readers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1