{"title":"看不见的食物分割","authors":"Yuma Honbu, Keiji Yanai","doi":"10.1145/3512527.3531426","DOIUrl":null,"url":null,"abstract":"Food image segmentation is important for detailed analysis on food images, especially for classification of multiple food items and calorie amount estimation. However, there is a costly problem in training a semantic segmentation model because it requires a large number of images with pixel-level annotations. In addition, the existence of a myriad of food categories causes the problem of insufficient data in each category. Although several food segmentation datasets such as the UEC-FoodPix Complete has been released so far, the number of food categories is still limited to a small number. In this study, we propose an unseen class segmentation method with high accuracy by using both zero-shot and few-shot segmentation methods for any unseen classes. we make the following contributions: (1) we propose a UnSeen Food Segmentation method (USFoodSeg) that uses the zero-shot model to infer the segmentation mask from the class label words of unseen classes and those images, and uses the few-shot model to refine the segmentation masks. (2) We generate segmentation masks for 156 categories of the unseen class UEC-Food256, totaling 17,000 images, and 85 categories in the Food-101 dataset, totaling 85,000 images, with an accuracy of over 90%. Our proposed method is able to solve the problem of insufficient food segmentation data.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unseen Food Segmentation\",\"authors\":\"Yuma Honbu, Keiji Yanai\",\"doi\":\"10.1145/3512527.3531426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food image segmentation is important for detailed analysis on food images, especially for classification of multiple food items and calorie amount estimation. However, there is a costly problem in training a semantic segmentation model because it requires a large number of images with pixel-level annotations. In addition, the existence of a myriad of food categories causes the problem of insufficient data in each category. Although several food segmentation datasets such as the UEC-FoodPix Complete has been released so far, the number of food categories is still limited to a small number. In this study, we propose an unseen class segmentation method with high accuracy by using both zero-shot and few-shot segmentation methods for any unseen classes. we make the following contributions: (1) we propose a UnSeen Food Segmentation method (USFoodSeg) that uses the zero-shot model to infer the segmentation mask from the class label words of unseen classes and those images, and uses the few-shot model to refine the segmentation masks. (2) We generate segmentation masks for 156 categories of the unseen class UEC-Food256, totaling 17,000 images, and 85 categories in the Food-101 dataset, totaling 85,000 images, with an accuracy of over 90%. Our proposed method is able to solve the problem of insufficient food segmentation data.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Food image segmentation is important for detailed analysis on food images, especially for classification of multiple food items and calorie amount estimation. However, there is a costly problem in training a semantic segmentation model because it requires a large number of images with pixel-level annotations. In addition, the existence of a myriad of food categories causes the problem of insufficient data in each category. Although several food segmentation datasets such as the UEC-FoodPix Complete has been released so far, the number of food categories is still limited to a small number. In this study, we propose an unseen class segmentation method with high accuracy by using both zero-shot and few-shot segmentation methods for any unseen classes. we make the following contributions: (1) we propose a UnSeen Food Segmentation method (USFoodSeg) that uses the zero-shot model to infer the segmentation mask from the class label words of unseen classes and those images, and uses the few-shot model to refine the segmentation masks. (2) We generate segmentation masks for 156 categories of the unseen class UEC-Food256, totaling 17,000 images, and 85 categories in the Food-101 dataset, totaling 85,000 images, with an accuracy of over 90%. Our proposed method is able to solve the problem of insufficient food segmentation data.