利用神经网络和遗传算法进行智能信息处理

H. Abdel-Aty-Zohdy, R. Ewing
{"title":"利用神经网络和遗传算法进行智能信息处理","authors":"H. Abdel-Aty-Zohdy, R. Ewing","doi":"10.1109/MWSCAS.2000.952886","DOIUrl":null,"url":null,"abstract":"Intelligent information processing (IIP) or the smart processing of signals in communication systems and data measurements from multi-sensor systems are needed for advanced microautonomous applications. A balanced combination of efficient algorithms, fast networks, and collaboration of the different technologies are required for smaller, faster, and more efficient system-on-a-chip applications. In this paper we present guidelines/approach for intelligent information processing using neural networks (NNs) and genetic algorithms (GAs) which are capable of learning through discovery and/or reinforcement with features optimization through chromosome mutations of GAs. Specific details about a special application for electronic-nose (EN) implementation to discriminate among four chemicals, using reinforcement NN implemented tiny-chip and a GA system implementation is presented with test results.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Intelligent information processing using neural networks and genetic algorithms\",\"authors\":\"H. Abdel-Aty-Zohdy, R. Ewing\",\"doi\":\"10.1109/MWSCAS.2000.952886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent information processing (IIP) or the smart processing of signals in communication systems and data measurements from multi-sensor systems are needed for advanced microautonomous applications. A balanced combination of efficient algorithms, fast networks, and collaboration of the different technologies are required for smaller, faster, and more efficient system-on-a-chip applications. In this paper we present guidelines/approach for intelligent information processing using neural networks (NNs) and genetic algorithms (GAs) which are capable of learning through discovery and/or reinforcement with features optimization through chromosome mutations of GAs. Specific details about a special application for electronic-nose (EN) implementation to discriminate among four chemicals, using reinforcement NN implemented tiny-chip and a GA system implementation is presented with test results.\",\"PeriodicalId\":437349,\"journal\":{\"name\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2000.952886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.952886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

先进的微自治应用需要智能信息处理(IIP)或通信系统信号和多传感器系统数据测量的智能处理。高效算法、快速网络和不同技术协作的平衡组合需要更小、更快和更高效的片上系统应用。在本文中,我们提出了使用神经网络(NNs)和遗传算法(GAs)进行智能信息处理的指南/方法,这些算法能够通过发现和/或通过遗传算法的染色体突变进行特征优化来进行学习。本文详细介绍了电子鼻(EN)在四种化学物质鉴别中的特殊应用,即利用增强神经网络实现的微芯片和遗传算法系统实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent information processing using neural networks and genetic algorithms
Intelligent information processing (IIP) or the smart processing of signals in communication systems and data measurements from multi-sensor systems are needed for advanced microautonomous applications. A balanced combination of efficient algorithms, fast networks, and collaboration of the different technologies are required for smaller, faster, and more efficient system-on-a-chip applications. In this paper we present guidelines/approach for intelligent information processing using neural networks (NNs) and genetic algorithms (GAs) which are capable of learning through discovery and/or reinforcement with features optimization through chromosome mutations of GAs. Specific details about a special application for electronic-nose (EN) implementation to discriminate among four chemicals, using reinforcement NN implemented tiny-chip and a GA system implementation is presented with test results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high speed 3.3V current mode CMOS comparators with 10-b resolution Constraints implementation for IQML and MODE direction-of-arrival estimators A fast electric load forecasting using neural networks Noise reduction in speech signals using a TMS320C31 digital signal processor A high-frequency high-Q CMOS active inductor with DC bias control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1