解纠缠特征引导多曝光高动态范围成像

Keun-Ohk Lee, Y. Jang, N. Cho
{"title":"解纠缠特征引导多曝光高动态范围成像","authors":"Keun-Ohk Lee, Y. Jang, N. Cho","doi":"10.1109/icassp43922.2022.9747329","DOIUrl":null,"url":null,"abstract":"Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disentangled Feature-Guided Multi-Exposure High Dynamic Range Imaging\",\"authors\":\"Keun-Ohk Lee, Y. Jang, N. Cho\",\"doi\":\"10.1109/icassp43922.2022.9747329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多曝光高动态范围(HDR)成像的目的是将多幅不同曝光的低动态范围(LDR)图像生成一幅HDR图像。由于两个主要问题,这是一项具有挑战性的任务:(1)输入的LDR图像之间通常存在不对准;(2)由于曝光不足/过度,LDR图像通常具有不完整的信息。在本文中,我们提出了一种解纠缠特征引导的HDR网络(DFGNet)来缓解上述问题。具体而言,我们首先提取并解卷积输入LDR图像的曝光特征和空间特征。然后,我们通过提出的DFG模块对这些特征进行处理,生成高质量的HDR图像。实验表明,所提出的DFGNet在一个基准数据集上取得了优异的性能。我们的代码和更多结果可在https://github.com/KeuntekLee/DFGNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disentangled Feature-Guided Multi-Exposure High Dynamic Range Imaging
Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1