{"title":"解纠缠特征引导多曝光高动态范围成像","authors":"Keun-Ohk Lee, Y. Jang, N. Cho","doi":"10.1109/icassp43922.2022.9747329","DOIUrl":null,"url":null,"abstract":"Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disentangled Feature-Guided Multi-Exposure High Dynamic Range Imaging\",\"authors\":\"Keun-Ohk Lee, Y. Jang, N. Cho\",\"doi\":\"10.1109/icassp43922.2022.9747329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disentangled Feature-Guided Multi-Exposure High Dynamic Range Imaging
Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR image from multiple differently exposed low dynamic range (LDR) images. It is a challenging task due to two major problems: (1) there are usually misalignments among the input LDR images, and (2) LDR images often have incomplete information due to under-/over-exposure. In this paper, we propose a disentangled feature-guided HDR network (DFGNet) to alleviate the above-stated problems. Specifically, we first extract and disentangle exposure features and spatial features of input LDR images. Then, we process these features through the proposed DFG modules, which produce a high-quality HDR image. Experiments show that the proposed DFGNet achieves outstanding performance on a benchmark dataset. Our code and more results are available at https://github.com/KeuntekLee/DFGNet.