{"title":"在非信标启用的IEEE 802.15.4网络中提高能源效率的分布式睡眠机制","authors":"R. Kiyumi, S. Vural, C. Foh, R. Tafazolli","doi":"10.1109/CAMAD.2015.7390516","DOIUrl":null,"url":null,"abstract":"The IEEE 802.15.4 protocol is widely adopted as the MAC sub-layer standard for wireless sensor networks, with two available modes: beacon-enabled and non-beacon-enabled. The non-beacon-enabled mode is simpler and does not require time synchronisation; however, it lacks an explicit energy saving mechanism that is crucial for its deployment on energy-constrained sensors. This paper proposes a distributed sleep mechanism for non-beacon-enabled IEEE 802.15.4 networks which provides energy savings to energy-limited nodes. The proposed mechanism introduces a sleep state that follows each successful packet transmission. Besides energy savings, the mechanism produces a traffic shaping effect that reduces the overall contention in the network, effectively improving packet delivery ratio. Based on traffic arrival rate and the level of network contention, a node can adjust its sleep period to achieve the highest packet delivery ratio. Performance results obtained by ns3 simulations validate these improvements as compared to the IEEE 802.15.4 standard.","PeriodicalId":370856,"journal":{"name":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A distributed sleep mechanism for energy-efficiency in non-beacon-enabled IEEE 802.15.4 networks\",\"authors\":\"R. Kiyumi, S. Vural, C. Foh, R. Tafazolli\",\"doi\":\"10.1109/CAMAD.2015.7390516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IEEE 802.15.4 protocol is widely adopted as the MAC sub-layer standard for wireless sensor networks, with two available modes: beacon-enabled and non-beacon-enabled. The non-beacon-enabled mode is simpler and does not require time synchronisation; however, it lacks an explicit energy saving mechanism that is crucial for its deployment on energy-constrained sensors. This paper proposes a distributed sleep mechanism for non-beacon-enabled IEEE 802.15.4 networks which provides energy savings to energy-limited nodes. The proposed mechanism introduces a sleep state that follows each successful packet transmission. Besides energy savings, the mechanism produces a traffic shaping effect that reduces the overall contention in the network, effectively improving packet delivery ratio. Based on traffic arrival rate and the level of network contention, a node can adjust its sleep period to achieve the highest packet delivery ratio. Performance results obtained by ns3 simulations validate these improvements as compared to the IEEE 802.15.4 standard.\",\"PeriodicalId\":370856,\"journal\":{\"name\":\"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD.2015.7390516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2015.7390516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distributed sleep mechanism for energy-efficiency in non-beacon-enabled IEEE 802.15.4 networks
The IEEE 802.15.4 protocol is widely adopted as the MAC sub-layer standard for wireless sensor networks, with two available modes: beacon-enabled and non-beacon-enabled. The non-beacon-enabled mode is simpler and does not require time synchronisation; however, it lacks an explicit energy saving mechanism that is crucial for its deployment on energy-constrained sensors. This paper proposes a distributed sleep mechanism for non-beacon-enabled IEEE 802.15.4 networks which provides energy savings to energy-limited nodes. The proposed mechanism introduces a sleep state that follows each successful packet transmission. Besides energy savings, the mechanism produces a traffic shaping effect that reduces the overall contention in the network, effectively improving packet delivery ratio. Based on traffic arrival rate and the level of network contention, a node can adjust its sleep period to achieve the highest packet delivery ratio. Performance results obtained by ns3 simulations validate these improvements as compared to the IEEE 802.15.4 standard.