性别和年龄识别视频分析解决方案

V. Khryashchev, A. Priorov, A. Ganin
{"title":"性别和年龄识别视频分析解决方案","authors":"V. Khryashchev, A. Priorov, A. Ganin","doi":"10.1109/AIPR.2014.7041914","DOIUrl":null,"url":null,"abstract":"An application for video data analysis based on computer vision and machine learning methods is presented. Novel gender and age classifiers based on adaptive features, local binary patterns and support vector machines are proposed. More than 94% accuracy of viewer's gender recognition is achieved. Our age estimation algorithm provides world-quality results for MORTH database, but focused on real-life audience measurement videodata in which faces can be looks more or less similar to RUS-FD private database. In this case we can reach total mean absolute error score less than 7. All the video processing stages are united into a real-time system of audience analysis. The system allows to extract all the possible information about people from the input video stream, to aggregate and analyze this information in order to measure different statistical parameters. The promising practical application of such algorithms can be human-computer interaction, surveillance monitoring, video content analysis, targeted advertising, biometrics, and entertainment.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Gender and age recognition for video analytics solution\",\"authors\":\"V. Khryashchev, A. Priorov, A. Ganin\",\"doi\":\"10.1109/AIPR.2014.7041914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application for video data analysis based on computer vision and machine learning methods is presented. Novel gender and age classifiers based on adaptive features, local binary patterns and support vector machines are proposed. More than 94% accuracy of viewer's gender recognition is achieved. Our age estimation algorithm provides world-quality results for MORTH database, but focused on real-life audience measurement videodata in which faces can be looks more or less similar to RUS-FD private database. In this case we can reach total mean absolute error score less than 7. All the video processing stages are united into a real-time system of audience analysis. The system allows to extract all the possible information about people from the input video stream, to aggregate and analyze this information in order to measure different statistical parameters. The promising practical application of such algorithms can be human-computer interaction, surveillance monitoring, video content analysis, targeted advertising, biometrics, and entertainment.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于计算机视觉和机器学习方法的视频数据分析应用。提出了基于自适应特征、局部二值模式和支持向量机的性别和年龄分类器。对观众的性别识别准确率达到94%以上。我们的年龄估计算法为north数据库提供了世界质量的结果,但侧重于现实生活中的观众测量视频数据,其中面部看起来或多或少与RUS-FD私有数据库相似。在这种情况下,我们可以达到总平均绝对误差得分小于7。所有的视频处理阶段都统一成一个实时的观众分析系统。该系统允许从输入的视频流中提取所有可能的人物信息,并对这些信息进行汇总和分析,以测量不同的统计参数。这种算法有希望的实际应用可以是人机交互、监视监控、视频内容分析、目标广告、生物识别和娱乐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gender and age recognition for video analytics solution
An application for video data analysis based on computer vision and machine learning methods is presented. Novel gender and age classifiers based on adaptive features, local binary patterns and support vector machines are proposed. More than 94% accuracy of viewer's gender recognition is achieved. Our age estimation algorithm provides world-quality results for MORTH database, but focused on real-life audience measurement videodata in which faces can be looks more or less similar to RUS-FD private database. In this case we can reach total mean absolute error score less than 7. All the video processing stages are united into a real-time system of audience analysis. The system allows to extract all the possible information about people from the input video stream, to aggregate and analyze this information in order to measure different statistical parameters. The promising practical application of such algorithms can be human-computer interaction, surveillance monitoring, video content analysis, targeted advertising, biometrics, and entertainment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1