无监督知识发现的探索性双曲树聚类工具

M. Riegler, Konstantin Pogorelov, M. Lux, P. Halvorsen, C. Griwodz, T. Lange, S. Eskeland
{"title":"无监督知识发现的探索性双曲树聚类工具","authors":"M. Riegler, Konstantin Pogorelov, M. Lux, P. Halvorsen, C. Griwodz, T. Lange, S. Eskeland","doi":"10.1109/CBMI.2016.7500271","DOIUrl":null,"url":null,"abstract":"Exploring and annotating collections of images without meta-data is a laborious task. Visual analytics and information visualization can help users by providing interfaces for exploration and annotation. In this paper, we show a prototype application that allows users from the medical domain to use feature-based clustering to perform explorative browsing and annotation in an unsupervised manner. For this, we utilize global image feature extraction, different unsupervised clustering algorithms and hyperbolic tree representation. First, the prototype application extracts features from images or video frames, and then, one or multiple features at the same time can be used to perform clustering. The clusters are presented to the users as a hyperbolic tree for visual analysis and annotation.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Explorative hyperbolic-tree-based clustering tool for unsupervised knowledge discovery\",\"authors\":\"M. Riegler, Konstantin Pogorelov, M. Lux, P. Halvorsen, C. Griwodz, T. Lange, S. Eskeland\",\"doi\":\"10.1109/CBMI.2016.7500271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring and annotating collections of images without meta-data is a laborious task. Visual analytics and information visualization can help users by providing interfaces for exploration and annotation. In this paper, we show a prototype application that allows users from the medical domain to use feature-based clustering to perform explorative browsing and annotation in an unsupervised manner. For this, we utilize global image feature extraction, different unsupervised clustering algorithms and hyperbolic tree representation. First, the prototype application extracts features from images or video frames, and then, one or multiple features at the same time can be used to perform clustering. The clusters are presented to the users as a hyperbolic tree for visual analysis and annotation.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在没有元数据的情况下探索和注释图像集合是一项费力的任务。可视化分析和信息可视化可以通过提供探索和注释的界面来帮助用户。在本文中,我们展示了一个原型应用程序,该应用程序允许医疗领域的用户使用基于特征的聚类以无监督的方式执行探索性浏览和注释。为此,我们利用了全局图像特征提取、不同的无监督聚类算法和双曲树表示。首先,原型应用程序从图像或视频帧中提取特征,然后可以同时使用一个或多个特征进行聚类。聚类以双曲树的形式呈现给用户,便于可视化分析和注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explorative hyperbolic-tree-based clustering tool for unsupervised knowledge discovery
Exploring and annotating collections of images without meta-data is a laborious task. Visual analytics and information visualization can help users by providing interfaces for exploration and annotation. In this paper, we show a prototype application that allows users from the medical domain to use feature-based clustering to perform explorative browsing and annotation in an unsupervised manner. For this, we utilize global image feature extraction, different unsupervised clustering algorithms and hyperbolic tree representation. First, the prototype application extracts features from images or video frames, and then, one or multiple features at the same time can be used to perform clustering. The clusters are presented to the users as a hyperbolic tree for visual analysis and annotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Music Tweet Map: A browsing interface to explore the microblogosphere of music A novel architecture of semantic web reasoner based on transferable belief model Simple tag-based subclass representations for visually-varied image classes Crowdsourcing as self-fulfilling prophecy: Influence of discarding workers in subjective assessment tasks EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1