Cristian Martín, Daniel Garrido, M. Díaz, B. Rubio
{"title":"从边缘到云:实现可靠的物联网应用","authors":"Cristian Martín, Daniel Garrido, M. Díaz, B. Rubio","doi":"10.1109/FiCloud.2019.00011","DOIUrl":null,"url":null,"abstract":"This paper presents a reliable architecture for the IoT considering multiple levels: edge, fog and cloud. This architecture can help to reduce latency and improve resiliency of IoT applications. The platform is based on a set of containerised components replicated at different levels. Fault tolerance mechanisms are provided by means of replication, the Apache Kafka framework and shadow devices. Apache Kafka is used to distribute messages along the multiple levels. Shadow devices include device states, and they can be used to avoid device interruptions using physical replication and state restoration. The architecture is also protocol-agnostic, allowing the use of different adaptors for the most common IoT protocols. A mission-critical use case is presented where this architecture can be applied. Finally, an evaluation has been carried out in order to test the feasibility of the fog infrastructure.","PeriodicalId":268882,"journal":{"name":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"From the Edge to the Cloud: Enabling Reliable IoT Applications\",\"authors\":\"Cristian Martín, Daniel Garrido, M. Díaz, B. Rubio\",\"doi\":\"10.1109/FiCloud.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a reliable architecture for the IoT considering multiple levels: edge, fog and cloud. This architecture can help to reduce latency and improve resiliency of IoT applications. The platform is based on a set of containerised components replicated at different levels. Fault tolerance mechanisms are provided by means of replication, the Apache Kafka framework and shadow devices. Apache Kafka is used to distribute messages along the multiple levels. Shadow devices include device states, and they can be used to avoid device interruptions using physical replication and state restoration. The architecture is also protocol-agnostic, allowing the use of different adaptors for the most common IoT protocols. A mission-critical use case is presented where this architecture can be applied. Finally, an evaluation has been carried out in order to test the feasibility of the fog infrastructure.\",\"PeriodicalId\":268882,\"journal\":{\"name\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":\"26 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From the Edge to the Cloud: Enabling Reliable IoT Applications
This paper presents a reliable architecture for the IoT considering multiple levels: edge, fog and cloud. This architecture can help to reduce latency and improve resiliency of IoT applications. The platform is based on a set of containerised components replicated at different levels. Fault tolerance mechanisms are provided by means of replication, the Apache Kafka framework and shadow devices. Apache Kafka is used to distribute messages along the multiple levels. Shadow devices include device states, and they can be used to avoid device interruptions using physical replication and state restoration. The architecture is also protocol-agnostic, allowing the use of different adaptors for the most common IoT protocols. A mission-critical use case is presented where this architecture can be applied. Finally, an evaluation has been carried out in order to test the feasibility of the fog infrastructure.