三维柔性微机构的通用运动学建模框架

Zhong Yang, D. Popa
{"title":"三维柔性微机构的通用运动学建模框架","authors":"Zhong Yang, D. Popa","doi":"10.1109/MARSS.2018.8481221","DOIUrl":null,"url":null,"abstract":"Exploiting engineering compliance in microrobotics has been a breakthrough approach for navigating well-known tradeoffs related to precision, fabrication, and control challenges at small scales. However, modeling of compliant, multi-body, 3 dimensional microrobots is considerably more difficult than traditional rigid-body robot kinematics. In this paper, we formulate a kinematic modeling methodology applicable to a broad class of compliant microrobots. Such models can be used prior to fabrication to evaluate mechanism dexterity, precision and sensitivity to dimensional tolerances. They can also be used for microrobot visualization, control synthesis and for fast parametric optimization. We exemplify our approach by modeling the AFAM, an Articulated Four Axes Microrobot, constructed via 3D microassembly from Micro Electro Mechanical System (MEMS) compliant building blocks. The AFAM is a novel mm-scale microrobot designed for nano-positioning tasks in future wafer-scale microfactories. We derive the kinematic model of the AFAM using a computationally scalable constraint optimization approach that can be used equally effectively for both forward and inverse kinematics. Simulation results using the robot operating system (ROS) programming framework are presented in the paper.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A General Kinematic Modeling Framework for a 3D Compliant Micromechanism\",\"authors\":\"Zhong Yang, D. Popa\",\"doi\":\"10.1109/MARSS.2018.8481221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting engineering compliance in microrobotics has been a breakthrough approach for navigating well-known tradeoffs related to precision, fabrication, and control challenges at small scales. However, modeling of compliant, multi-body, 3 dimensional microrobots is considerably more difficult than traditional rigid-body robot kinematics. In this paper, we formulate a kinematic modeling methodology applicable to a broad class of compliant microrobots. Such models can be used prior to fabrication to evaluate mechanism dexterity, precision and sensitivity to dimensional tolerances. They can also be used for microrobot visualization, control synthesis and for fast parametric optimization. We exemplify our approach by modeling the AFAM, an Articulated Four Axes Microrobot, constructed via 3D microassembly from Micro Electro Mechanical System (MEMS) compliant building blocks. The AFAM is a novel mm-scale microrobot designed for nano-positioning tasks in future wafer-scale microfactories. We derive the kinematic model of the AFAM using a computationally scalable constraint optimization approach that can be used equally effectively for both forward and inverse kinematics. Simulation results using the robot operating system (ROS) programming framework are presented in the paper.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在微型机器人中利用工程合规性是一种突破性的方法,可以在小尺度上导航与精度、制造和控制挑战相关的众所周知的权衡。然而,柔性、多体、三维微型机器人的建模比传统的刚体机器人运动学要困难得多。在本文中,我们制定了一种运动学建模方法,适用于一类广泛的柔性微型机器人。这种模型可以在制造之前用于评估机构的灵巧性、精度和对尺寸公差的敏感性。它们还可用于微型机器人的可视化、控制综合和快速参数优化。我们通过建模AFAM来举例我们的方法,AFAM是一种铰接四轴微型机器人,通过三维微组装由微机电系统(MEMS)兼容的构建块构建。AFAM是一种新型的毫米级微型机器人,用于未来晶圆级微型工厂的纳米定位任务。我们使用一种计算可扩展的约束优化方法推导了AFAM的运动学模型,该方法可以同样有效地用于正运动学和逆运动学。文中给出了机器人操作系统(ROS)编程框架的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A General Kinematic Modeling Framework for a 3D Compliant Micromechanism
Exploiting engineering compliance in microrobotics has been a breakthrough approach for navigating well-known tradeoffs related to precision, fabrication, and control challenges at small scales. However, modeling of compliant, multi-body, 3 dimensional microrobots is considerably more difficult than traditional rigid-body robot kinematics. In this paper, we formulate a kinematic modeling methodology applicable to a broad class of compliant microrobots. Such models can be used prior to fabrication to evaluate mechanism dexterity, precision and sensitivity to dimensional tolerances. They can also be used for microrobot visualization, control synthesis and for fast parametric optimization. We exemplify our approach by modeling the AFAM, an Articulated Four Axes Microrobot, constructed via 3D microassembly from Micro Electro Mechanical System (MEMS) compliant building blocks. The AFAM is a novel mm-scale microrobot designed for nano-positioning tasks in future wafer-scale microfactories. We derive the kinematic model of the AFAM using a computationally scalable constraint optimization approach that can be used equally effectively for both forward and inverse kinematics. Simulation results using the robot operating system (ROS) programming framework are presented in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright Information Ferrofluid Levitated Micro/Milli-Robots Implementation Scheme of Orbital Refueling Using Microsate IIite Assembly of Cellular Microstructures into Lobule-Like 3D Microtissues Based on Microrobotic Manipulation* Research supported by the Beijing Natural Science Foundation under Grant 4164099and the National Natural Science Foundation of China under grants 61603044and 61520106011. Three Dimensional Microfabrication Using Local Electrophoretic Deposition Assisted with Laser Trapping Controlled by a Spatial Light Modulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1