基于设计能力指标的复合材料结构逆多尺度稳健设计

Soban Babu Beemaraj, Rizwan Pathan, A. Salvi, Gehendra Sharma, F. Mistree, J. Allen
{"title":"基于设计能力指标的复合材料结构逆多尺度稳健设计","authors":"Soban Babu Beemaraj, Rizwan Pathan, A. Salvi, Gehendra Sharma, F. Mistree, J. Allen","doi":"10.1115/detc2020-22259","DOIUrl":null,"url":null,"abstract":"\n Composite materials are heterogeneous materials, and are hierarchical in nature consisting of multiple length scales. In the design of structures with composite materials, the micro-structure of the materials have a direct bearing on the final behavior of the structure. The deviations in the bulk material properties are caused due to uncertainties associated with the micro-structures and its propagation through different length scales. Uncertainties in the design parameters (geometry and materials properties etc.) at macro-scale also contribute to variations in the final behavior. Currently, these uncertainties are included as a large factor of safety in deterministic design, which may result in over design of the product. The robust performance of the structure can be achieved by considering these uncertainties explicitly in the design process. In this paper, a method for designing a robust composite structure subjected to different loading conditions is illustrated. Structural models are run to compute robust material properties and geometries for different load scenarios that yield most robust materials and micro-structures. Most robust combination of material and geometries is selected that results in most robust performance under all loading scenarios. These materials are designed using multiscale models in which micro-structural uncertainties are accounted. The uncertainties in the material properties and geometrical parameters at different length scales are explicitly modelled as ranges in the set of input parameters. Final performance variations are calculated using design capability index. Consolidated single material parameters and dimensions are selected using efficiency metrics. Design capability indices are formed as goals and constraints in compromise decision support problem. Robust micro-structures are designed inductively rather than deductively.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Multi-Scale Robust Design of Composite Structures Using Design Capability Indices\",\"authors\":\"Soban Babu Beemaraj, Rizwan Pathan, A. Salvi, Gehendra Sharma, F. Mistree, J. Allen\",\"doi\":\"10.1115/detc2020-22259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Composite materials are heterogeneous materials, and are hierarchical in nature consisting of multiple length scales. In the design of structures with composite materials, the micro-structure of the materials have a direct bearing on the final behavior of the structure. The deviations in the bulk material properties are caused due to uncertainties associated with the micro-structures and its propagation through different length scales. Uncertainties in the design parameters (geometry and materials properties etc.) at macro-scale also contribute to variations in the final behavior. Currently, these uncertainties are included as a large factor of safety in deterministic design, which may result in over design of the product. The robust performance of the structure can be achieved by considering these uncertainties explicitly in the design process. In this paper, a method for designing a robust composite structure subjected to different loading conditions is illustrated. Structural models are run to compute robust material properties and geometries for different load scenarios that yield most robust materials and micro-structures. Most robust combination of material and geometries is selected that results in most robust performance under all loading scenarios. These materials are designed using multiscale models in which micro-structural uncertainties are accounted. The uncertainties in the material properties and geometrical parameters at different length scales are explicitly modelled as ranges in the set of input parameters. Final performance variations are calculated using design capability index. Consolidated single material parameters and dimensions are selected using efficiency metrics. Design capability indices are formed as goals and constraints in compromise decision support problem. Robust micro-structures are designed inductively rather than deductively.\",\"PeriodicalId\":164403,\"journal\":{\"name\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复合材料是一种非均相材料,其本质是由多个长度尺度构成的层次结构。在复合材料结构设计中,材料的微观结构直接影响到结构的最终性能。块体材料性能的偏差是由微观结构及其在不同长度尺度上的传播的不确定性引起的。在宏观尺度上,设计参数(几何形状和材料特性等)的不确定性也会导致最终性能的变化。目前,在确定性设计中,这些不确定性被作为一个较大的安全因素,可能导致产品的过度设计。通过在设计过程中明确考虑这些不确定性,可以实现结构的鲁棒性能。本文阐述了在不同荷载条件下设计坚固复合结构的方法。运行结构模型来计算不同载荷情景下的坚固材料特性和几何形状,从而产生最坚固的材料和微结构。选择最坚固的材料和几何形状组合,从而在所有负载情况下获得最坚固的性能。这些材料是用多尺度模型设计的,其中考虑了微观结构的不确定性。在不同长度尺度下,材料性能和几何参数的不确定性被明确地建模为输入参数集合中的范围。使用设计能力指数计算最终性能变化。综合单一材料参数和尺寸采用效率指标选择。设计能力指标是折衷决策支持问题的目标和约束条件。坚固的微结构设计是归纳式的,而不是演绎式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inverse Multi-Scale Robust Design of Composite Structures Using Design Capability Indices
Composite materials are heterogeneous materials, and are hierarchical in nature consisting of multiple length scales. In the design of structures with composite materials, the micro-structure of the materials have a direct bearing on the final behavior of the structure. The deviations in the bulk material properties are caused due to uncertainties associated with the micro-structures and its propagation through different length scales. Uncertainties in the design parameters (geometry and materials properties etc.) at macro-scale also contribute to variations in the final behavior. Currently, these uncertainties are included as a large factor of safety in deterministic design, which may result in over design of the product. The robust performance of the structure can be achieved by considering these uncertainties explicitly in the design process. In this paper, a method for designing a robust composite structure subjected to different loading conditions is illustrated. Structural models are run to compute robust material properties and geometries for different load scenarios that yield most robust materials and micro-structures. Most robust combination of material and geometries is selected that results in most robust performance under all loading scenarios. These materials are designed using multiscale models in which micro-structural uncertainties are accounted. The uncertainties in the material properties and geometrical parameters at different length scales are explicitly modelled as ranges in the set of input parameters. Final performance variations are calculated using design capability index. Consolidated single material parameters and dimensions are selected using efficiency metrics. Design capability indices are formed as goals and constraints in compromise decision support problem. Robust micro-structures are designed inductively rather than deductively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Tensile Tests Performed on 316L Specimens Manufactured by Directed Energy Deposition Agent Based Resilient Transportation Infrastructure With Surrogate Adaptive Networks Medical Assessment Test of Extrapersonal Neglect Using Virtual Reality: A Preliminary Study Predictive Human-in-the-Loop Simulations for Assistive Exoskeletons Multi-Objective Implementation of Additive Manufacturing in Make-to-Stock Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1