具有马尔可夫到达的认知无线电信道的能量效率

Mustafa Ozmen, Gozde Ozcan, M. C. Gursoy
{"title":"具有马尔可夫到达的认知无线电信道的能量效率","authors":"Mustafa Ozmen, Gozde Ozcan, M. C. Gursoy","doi":"10.1109/BlackSeaCom.2013.6623406","DOIUrl":null,"url":null,"abstract":"In this paper, fundamental limits on the energy efficiency of cognitive radio transmissions are studied in the presence of statistical quality of service (QoS) constraints when the data arrival process at the cognitive transmitter is modeled as a two-state Markov chain. It is assumed that cognitive secondary users initially sense the channel via energy detection and adjust their transmission power levels according to the sensing decisions. Considering the true states of the primary user activity, imperfect sensing decisions, and the reliability of the transmissions, a state-transition model with four states is constructed for the cognitive radio channel. A framework for determining the maximum average arrival rates that can be supported in the cognitive radio channel under QoS constraints is provided by employing the notions of effective bandwidth of Markov arrivals and effective capacity of cognitive radio transmissions. After formulating the maximum average arrival rates, minimum energy per bit and wideband slope expressions are obtained in order to identify the energy efficiency of cognitive radio systems.","PeriodicalId":170309,"journal":{"name":"2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy efficiency in cognitive radio channels with Markov arrivals\",\"authors\":\"Mustafa Ozmen, Gozde Ozcan, M. C. Gursoy\",\"doi\":\"10.1109/BlackSeaCom.2013.6623406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, fundamental limits on the energy efficiency of cognitive radio transmissions are studied in the presence of statistical quality of service (QoS) constraints when the data arrival process at the cognitive transmitter is modeled as a two-state Markov chain. It is assumed that cognitive secondary users initially sense the channel via energy detection and adjust their transmission power levels according to the sensing decisions. Considering the true states of the primary user activity, imperfect sensing decisions, and the reliability of the transmissions, a state-transition model with four states is constructed for the cognitive radio channel. A framework for determining the maximum average arrival rates that can be supported in the cognitive radio channel under QoS constraints is provided by employing the notions of effective bandwidth of Markov arrivals and effective capacity of cognitive radio transmissions. After formulating the maximum average arrival rates, minimum energy per bit and wideband slope expressions are obtained in order to identify the energy efficiency of cognitive radio systems.\",\"PeriodicalId\":170309,\"journal\":{\"name\":\"2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BlackSeaCom.2013.6623406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2013.6623406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了在存在统计服务质量(QoS)约束的情况下,当数据到达认知发射机的过程被建模为双态马尔可夫链时,认知无线电传输能量效率的基本限制。假设认知二次用户最初通过能量检测感知信道,并根据感知决策调整其发射功率水平。考虑到主用户活动的真实状态、感知决策的不完美性和传输的可靠性,构建了认知无线电信道的四状态状态转移模型。采用马尔可夫到达的有效带宽和认知无线电传输的有效容量的概念,提供了一个确定在QoS约束下认知无线电信道中可以支持的最大平均到达率的框架。在确定了最大平均到达率后,得到了最小每比特能量和宽带斜率表达式,从而确定了认知无线电系统的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy efficiency in cognitive radio channels with Markov arrivals
In this paper, fundamental limits on the energy efficiency of cognitive radio transmissions are studied in the presence of statistical quality of service (QoS) constraints when the data arrival process at the cognitive transmitter is modeled as a two-state Markov chain. It is assumed that cognitive secondary users initially sense the channel via energy detection and adjust their transmission power levels according to the sensing decisions. Considering the true states of the primary user activity, imperfect sensing decisions, and the reliability of the transmissions, a state-transition model with four states is constructed for the cognitive radio channel. A framework for determining the maximum average arrival rates that can be supported in the cognitive radio channel under QoS constraints is provided by employing the notions of effective bandwidth of Markov arrivals and effective capacity of cognitive radio transmissions. After formulating the maximum average arrival rates, minimum energy per bit and wideband slope expressions are obtained in order to identify the energy efficiency of cognitive radio systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite horizon online packet scheduling with energy and delay constraints Design of a self-portrait application with sensor-assisted guiding for smart devices Forward and reverse coding for bacteria nanonetworks Exploiting multiple wireless interfaces in smartphones for traffic offloading A new block Markov coding strategy for pairwise and collective cooperation in the three user MAC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1