{"title":"盘吉浮式光伏电站面板下蒸发量的测量与对比分析","authors":"Yaoping Bei, Bingqing Yuan, Dongmei Cao, Shaobo Ruan","doi":"10.1109/ACEEE56193.2022.9851830","DOIUrl":null,"url":null,"abstract":"Compared with the traditional land-based photovoltaic power station, the water surface photovoltaic power station not only strengthens the comprehensive utilization of water area, but also has the advantages of inhibiting evaporation and saving water resources. In this paper, taking the Panji 150 MW floating photovoltaic power station in Huainan City as the object, the first large-scale floating photovoltaic power station empirical platform is built, and the continuous evaporation in-situ monitoring experiment is carried out to process and analyze the evaporation observation data. Firstly, diurnal variation characteristics of natural evaporation in the area of floating photovoltaic construction are summarized. Then, the monthly variation trend of evaporation under the module panel is investigated. Finally, the characteristics of evaporation under different modules are compared and discussed, and it is found that the inhibition rate of evaporation under the photovoltaic module panel is between 39.87% and 47.80% during an evaporation monitoring period in the summer of 2021. The experimental results demonstrate that the coverage of floating photovoltaic can effectively restrain the evaporation, and the evaporation under the module panel has a tendency of uneven distribution within a year. There is a slight difference in the amount of evaporation under different modules. In the autumn of 2020, the total evaporation under the panel of APE back sheet photovoltaic module is the largest, followed by that of TPT, KPK, FCC.","PeriodicalId":142893,"journal":{"name":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement and Comparative Analysis of Evaporation under the Panel of Panji Floating Photovoltaic Power Station\",\"authors\":\"Yaoping Bei, Bingqing Yuan, Dongmei Cao, Shaobo Ruan\",\"doi\":\"10.1109/ACEEE56193.2022.9851830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the traditional land-based photovoltaic power station, the water surface photovoltaic power station not only strengthens the comprehensive utilization of water area, but also has the advantages of inhibiting evaporation and saving water resources. In this paper, taking the Panji 150 MW floating photovoltaic power station in Huainan City as the object, the first large-scale floating photovoltaic power station empirical platform is built, and the continuous evaporation in-situ monitoring experiment is carried out to process and analyze the evaporation observation data. Firstly, diurnal variation characteristics of natural evaporation in the area of floating photovoltaic construction are summarized. Then, the monthly variation trend of evaporation under the module panel is investigated. Finally, the characteristics of evaporation under different modules are compared and discussed, and it is found that the inhibition rate of evaporation under the photovoltaic module panel is between 39.87% and 47.80% during an evaporation monitoring period in the summer of 2021. The experimental results demonstrate that the coverage of floating photovoltaic can effectively restrain the evaporation, and the evaporation under the module panel has a tendency of uneven distribution within a year. There is a slight difference in the amount of evaporation under different modules. In the autumn of 2020, the total evaporation under the panel of APE back sheet photovoltaic module is the largest, followed by that of TPT, KPK, FCC.\",\"PeriodicalId\":142893,\"journal\":{\"name\":\"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACEEE56193.2022.9851830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEEE56193.2022.9851830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement and Comparative Analysis of Evaporation under the Panel of Panji Floating Photovoltaic Power Station
Compared with the traditional land-based photovoltaic power station, the water surface photovoltaic power station not only strengthens the comprehensive utilization of water area, but also has the advantages of inhibiting evaporation and saving water resources. In this paper, taking the Panji 150 MW floating photovoltaic power station in Huainan City as the object, the first large-scale floating photovoltaic power station empirical platform is built, and the continuous evaporation in-situ monitoring experiment is carried out to process and analyze the evaporation observation data. Firstly, diurnal variation characteristics of natural evaporation in the area of floating photovoltaic construction are summarized. Then, the monthly variation trend of evaporation under the module panel is investigated. Finally, the characteristics of evaporation under different modules are compared and discussed, and it is found that the inhibition rate of evaporation under the photovoltaic module panel is between 39.87% and 47.80% during an evaporation monitoring period in the summer of 2021. The experimental results demonstrate that the coverage of floating photovoltaic can effectively restrain the evaporation, and the evaporation under the module panel has a tendency of uneven distribution within a year. There is a slight difference in the amount of evaporation under different modules. In the autumn of 2020, the total evaporation under the panel of APE back sheet photovoltaic module is the largest, followed by that of TPT, KPK, FCC.