细粒香蕉成熟期分类的CNN参数优化模型

Zaid Cahya, D. Cahya, T. Nugroho, Ardani Zuhri, W. Agusta
{"title":"细粒香蕉成熟期分类的CNN参数优化模型","authors":"Zaid Cahya, D. Cahya, T. Nugroho, Ardani Zuhri, W. Agusta","doi":"10.1145/3575882.3575900","DOIUrl":null,"url":null,"abstract":"Fruit grading is a significant problem in the fruit industry because each maturity stage of the fruit represents a distinct economic worth. Banana is one of the most mass-produced fruits that must be visually classified. However, because human eye perception varies, precise classification using a machine is necessary to standardise the grading system. This research develops a four-layered CNN deep-learning model to classify bananas into seven ripening stages. To train the model, we employed Mazen and Nashat dataset and expanded it using data augmentation techniques. As a baseline, we trained a basic four-layer CNN model and achieved 88.2% of accuracy in fine-grained categorisation due to the similarity of the adjacent ripening class. To enhance the accuracy of our basic model, we applied a parameter optimisation approach to get the best hyper-parameters for the profound banana ripeness indicator. As a result, the time-constrained parameter optimisation method that we utilised successfully increased the model accuracy up to 91.2% and the F1 score at 90.5%, which is satisfactory for fine-grained banana classification compared to the previous research.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification\",\"authors\":\"Zaid Cahya, D. Cahya, T. Nugroho, Ardani Zuhri, W. Agusta\",\"doi\":\"10.1145/3575882.3575900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fruit grading is a significant problem in the fruit industry because each maturity stage of the fruit represents a distinct economic worth. Banana is one of the most mass-produced fruits that must be visually classified. However, because human eye perception varies, precise classification using a machine is necessary to standardise the grading system. This research develops a four-layered CNN deep-learning model to classify bananas into seven ripening stages. To train the model, we employed Mazen and Nashat dataset and expanded it using data augmentation techniques. As a baseline, we trained a basic four-layer CNN model and achieved 88.2% of accuracy in fine-grained categorisation due to the similarity of the adjacent ripening class. To enhance the accuracy of our basic model, we applied a parameter optimisation approach to get the best hyper-parameters for the profound banana ripeness indicator. As a result, the time-constrained parameter optimisation method that we utilised successfully increased the model accuracy up to 91.2% and the F1 score at 90.5%, which is satisfactory for fine-grained banana classification compared to the previous research.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水果分级是水果行业的一个重要问题,因为水果的每个成熟阶段都代表着不同的经济价值。香蕉是最大规模生产的水果之一,必须进行视觉分类。然而,由于人眼的感知是不同的,使用机器进行精确分类是标准化分级系统所必需的。本研究开发了一个四层CNN深度学习模型,将香蕉分为七个成熟阶段。为了训练模型,我们使用了Mazen和Nashat数据集,并使用数据增强技术对其进行了扩展。作为基线,我们训练了一个基本的四层CNN模型,由于相邻成熟类的相似性,在细粒度分类中获得了88.2%的准确率。为了提高基本模型的准确性,我们采用了参数优化方法来获得深度香蕉成熟度指标的最佳超参数。结果表明,我们使用的时间约束参数优化方法成功地将模型精度提高到91.2%,F1分数达到90.5%,与以往的研究相比,可以满足细粒香蕉的分类要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification
Fruit grading is a significant problem in the fruit industry because each maturity stage of the fruit represents a distinct economic worth. Banana is one of the most mass-produced fruits that must be visually classified. However, because human eye perception varies, precise classification using a machine is necessary to standardise the grading system. This research develops a four-layered CNN deep-learning model to classify bananas into seven ripening stages. To train the model, we employed Mazen and Nashat dataset and expanded it using data augmentation techniques. As a baseline, we trained a basic four-layer CNN model and achieved 88.2% of accuracy in fine-grained categorisation due to the similarity of the adjacent ripening class. To enhance the accuracy of our basic model, we applied a parameter optimisation approach to get the best hyper-parameters for the profound banana ripeness indicator. As a result, the time-constrained parameter optimisation method that we utilised successfully increased the model accuracy up to 91.2% and the F1 score at 90.5%, which is satisfactory for fine-grained banana classification compared to the previous research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1