液压缸回路半稳定极限环压力-流动动力学

M. Ruderman, Stefan Kaltenbacher, M. Horn
{"title":"液压缸回路半稳定极限环压力-流动动力学","authors":"M. Ruderman, Stefan Kaltenbacher, M. Horn","doi":"10.1109/ICM46511.2021.9385620","DOIUrl":null,"url":null,"abstract":"In hydraulic circuits of the standard fluid-power actuators and mechanisms, like the linear-stroke cylinders, some hydrodynamic effects are often neglected. It happens mainly due to their complexity and secondariness in comparison with the principal transient and steady-state behavior of the hydromechanical process variables, such as the differential pressure and relative displacement and its rate, in other words the piston stroke and velocity. However, a constrained motion of the cylinder piston can give rise to the back coupled excitation of the pressure-flow dynamics, especially upon mechanical impact at the cylinder limits. Following to that, semi-stable limit cycles can arise while the hydraulic cylinder remains under pressure without apparent displacement. This paper analyzes such back-coupled pressure-flow dynamics, derived from the partial differential momentum equation with involvement of Darcy-Weisbach hydraulic damping and continuity equation, out from which the closed-form system dynamics is formulated. In both, simulations and laboratory experiments, it is shown that if a constrained motion applies, the solution diverges from steady-state and can develop to the behavior similar to a semi-stable limit cycle.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-flow dynamics with semi-stable limit cycles in hydraulic cylinder circuits\",\"authors\":\"M. Ruderman, Stefan Kaltenbacher, M. Horn\",\"doi\":\"10.1109/ICM46511.2021.9385620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hydraulic circuits of the standard fluid-power actuators and mechanisms, like the linear-stroke cylinders, some hydrodynamic effects are often neglected. It happens mainly due to their complexity and secondariness in comparison with the principal transient and steady-state behavior of the hydromechanical process variables, such as the differential pressure and relative displacement and its rate, in other words the piston stroke and velocity. However, a constrained motion of the cylinder piston can give rise to the back coupled excitation of the pressure-flow dynamics, especially upon mechanical impact at the cylinder limits. Following to that, semi-stable limit cycles can arise while the hydraulic cylinder remains under pressure without apparent displacement. This paper analyzes such back-coupled pressure-flow dynamics, derived from the partial differential momentum equation with involvement of Darcy-Weisbach hydraulic damping and continuity equation, out from which the closed-form system dynamics is formulated. In both, simulations and laboratory experiments, it is shown that if a constrained motion applies, the solution diverges from steady-state and can develop to the behavior similar to a semi-stable limit cycle.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在标准的流体动力执行器和机构的液压回路中,如线性行程油缸,一些流体动力效应经常被忽略。这主要是由于与流体力学过程变量的主要瞬态和稳态行为(如压差和相对位移及其速率,即活塞行程和速度)相比,它们的复杂性和二次性。然而,气缸活塞的约束运动可能引起压力-流动动力学的反向耦合激励,特别是在气缸极限处的机械冲击时。在此之后,当液压缸处于压力下而无明显位移时,可以产生半稳定极限环。本文从含Darcy-Weisbach液压阻尼的偏微分动量方程和连续性方程出发,分析了这种反耦合压力-流动动力学,并由此导出了闭式系统动力学。仿真和室内实验均表明,当存在约束运动时,解偏离稳态,可以发展为类似于半稳定极限环的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressure-flow dynamics with semi-stable limit cycles in hydraulic cylinder circuits
In hydraulic circuits of the standard fluid-power actuators and mechanisms, like the linear-stroke cylinders, some hydrodynamic effects are often neglected. It happens mainly due to their complexity and secondariness in comparison with the principal transient and steady-state behavior of the hydromechanical process variables, such as the differential pressure and relative displacement and its rate, in other words the piston stroke and velocity. However, a constrained motion of the cylinder piston can give rise to the back coupled excitation of the pressure-flow dynamics, especially upon mechanical impact at the cylinder limits. Following to that, semi-stable limit cycles can arise while the hydraulic cylinder remains under pressure without apparent displacement. This paper analyzes such back-coupled pressure-flow dynamics, derived from the partial differential momentum equation with involvement of Darcy-Weisbach hydraulic damping and continuity equation, out from which the closed-form system dynamics is formulated. In both, simulations and laboratory experiments, it is shown that if a constrained motion applies, the solution diverges from steady-state and can develop to the behavior similar to a semi-stable limit cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem Hybrid identification with time-series data and frequency response data for accurate estimation of linear characteristics Study on how to remove the rope traction device on the overhead distribution lines Adaptive Robust Motion Control of Series Elastic Actuator with Unmatched Uncertainties Modeling and Control of Stable Limit Cycle Walking on Floating Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1