微流控芯片与世界芯片之间的接口,用于微纳米尺度的温度检测

N. Inomata, H. Maruyama, Takahiro Kato, F. Arai
{"title":"微流控芯片与世界芯片之间的接口,用于微纳米尺度的温度检测","authors":"N. Inomata, H. Maruyama, Takahiro Kato, F. Arai","doi":"10.1109/MHS.2009.5351965","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a microfluidic chip having a world-to-chip interface for multi-scale environmental measurement on a chip. There are several techniques for environmental measurement of the microscale objects using cantilever, microsensor and fluorescence method etc. Each technique has useful advantages against other methods. To employ these methods on a microfluidic chip simultaneously, we aim to develop a world-to-chip interface to insert a cantilever into the microfluidic chip and position it for sensing in a chip. We fabricated the microfluidic chip having this interface to insert the cantilever. This chip was designed to be used for inverted microscope. The solution does not leak from the interface by employing simultaneous flow control at both inlet and drain port. By using this interface, we demonstrated insertion and positioning of the cantilever into the microfluidic chip, and confirmed two-layer laminar flow control and detection of the local temperature change in the microchannel.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microfluidic chip with world-to-chip interface for temperature detection in micro-nanoscale\",\"authors\":\"N. Inomata, H. Maruyama, Takahiro Kato, F. Arai\",\"doi\":\"10.1109/MHS.2009.5351965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a microfluidic chip having a world-to-chip interface for multi-scale environmental measurement on a chip. There are several techniques for environmental measurement of the microscale objects using cantilever, microsensor and fluorescence method etc. Each technique has useful advantages against other methods. To employ these methods on a microfluidic chip simultaneously, we aim to develop a world-to-chip interface to insert a cantilever into the microfluidic chip and position it for sensing in a chip. We fabricated the microfluidic chip having this interface to insert the cantilever. This chip was designed to be used for inverted microscope. The solution does not leak from the interface by employing simultaneous flow control at both inlet and drain port. By using this interface, we demonstrated insertion and positioning of the cantilever into the microfluidic chip, and confirmed two-layer laminar flow control and detection of the local temperature change in the microchannel.\",\"PeriodicalId\":344667,\"journal\":{\"name\":\"2009 International Symposium on Micro-NanoMechatronics and Human Science\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on Micro-NanoMechatronics and Human Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2009.5351965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2009.5351965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种具有世界对芯片接口的微流控芯片,用于芯片上的多尺度环境测量。微尺度物体的环境测量技术有悬臂梁法、微传感器法和荧光法等。与其他方法相比,每种技术都具有有用的优势。为了在微流控芯片上同时应用这些方法,我们的目标是开发一个世界到芯片的接口,将悬臂插入微流控芯片并将其定位在芯片中进行传感。我们制作了具有该界面的微流控芯片来插入悬臂梁。该芯片是为倒置显微镜设计的。通过在进口和排放口同时进行流量控制,溶液不会从界面泄漏。通过该接口,我们演示了悬臂梁插入和定位到微流控芯片中,并验证了微通道中两层层流控制和局部温度变化的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic chip with world-to-chip interface for temperature detection in micro-nanoscale
In this paper, we proposed a microfluidic chip having a world-to-chip interface for multi-scale environmental measurement on a chip. There are several techniques for environmental measurement of the microscale objects using cantilever, microsensor and fluorescence method etc. Each technique has useful advantages against other methods. To employ these methods on a microfluidic chip simultaneously, we aim to develop a world-to-chip interface to insert a cantilever into the microfluidic chip and position it for sensing in a chip. We fabricated the microfluidic chip having this interface to insert the cantilever. This chip was designed to be used for inverted microscope. The solution does not leak from the interface by employing simultaneous flow control at both inlet and drain port. By using this interface, we demonstrated insertion and positioning of the cantilever into the microfluidic chip, and confirmed two-layer laminar flow control and detection of the local temperature change in the microchannel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mesoscale-object handling by temperature modulation of surface stresses Three dimensional bipedal walking locomotion using dynamic passivization of joint control Wheelchair driving control with sway suppression of passenger's posture and evaluation of comfortable ride by emotional sweating Risk management system based on uncertainty estimation by multi-agent Functional shRNA expression system with reduced off-target effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1