基于pca的人脸识别中两种预处理技术的比较

I. Ciocoiu, B. Valmar
{"title":"基于pca的人脸识别中两种预处理技术的比较","authors":"I. Ciocoiu, B. Valmar","doi":"10.1109/SCS.2003.1227004","DOIUrl":null,"url":null,"abstract":"We present a comparative analysis of the recognition performances of 2 different preprocessing techniques for face recognition application. The specific methods are projection-combined principal component analysis ((PC)2A) and eigenhills, which are compared against standard eigenface method. Recognition performances are computed using different distance measures and number of training images on the Olivetti database.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A comparison between two preprocessing techniques in PCA-based face recognition\",\"authors\":\"I. Ciocoiu, B. Valmar\",\"doi\":\"10.1109/SCS.2003.1227004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comparative analysis of the recognition performances of 2 different preprocessing techniques for face recognition application. The specific methods are projection-combined principal component analysis ((PC)2A) and eigenhills, which are compared against standard eigenface method. Recognition performances are computed using different distance measures and number of training images on the Olivetti database.\",\"PeriodicalId\":375963,\"journal\":{\"name\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCS.2003.1227004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们对两种不同的预处理技术在人脸识别中的应用性能进行了比较分析。具体方法是投影组合主成分分析((PC)2A)和特征丘,并与标准特征面方法进行了比较。使用不同的距离度量和Olivetti数据库上的训练图像数量来计算识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison between two preprocessing techniques in PCA-based face recognition
We present a comparative analysis of the recognition performances of 2 different preprocessing techniques for face recognition application. The specific methods are projection-combined principal component analysis ((PC)2A) and eigenhills, which are compared against standard eigenface method. Recognition performances are computed using different distance measures and number of training images on the Olivetti database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm based dynamic channel assignment for cellular radio networks Voltage controlled integrators/differentiators using current feedback amplifier A low noise-high counting rate readout system for X-ray imaging applications Implementation of 3D-DCT based video encoder/decoder system Periodic chaotic spreading sequences with better correlation properties than conventional sequences - BER performances analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1