压缩码的最近邻搜索:解码器视角

Kenza Amara, Matthijs Douze, Alexandre Sablayrolles, Herv'e J'egou
{"title":"压缩码的最近邻搜索:解码器视角","authors":"Kenza Amara, Matthijs Douze, Alexandre Sablayrolles, Herv'e J'egou","doi":"10.1145/3512527.3531408","DOIUrl":null,"url":null,"abstract":"Modern approaches for fast retrieval of similar vectors on billion-scaled datasets rely on compressed-domain approaches such as binary sketches or product quantization. These methods minimize a certain loss, typically the Mean Squared Error or other objective functions tailored to the retrieval problem. In this paper, we re-interpret popular methods such as binary hashing or product quantizers as auto-encoders, and point out that they implicitly make suboptimal assumptions on the form of the decoder. We design backward-compatible decoders that improve the reconstruction of the vectors from the same codes, which translates to a better performance in nearest neighbor search. Our method significantly improves over binary hashing methods and product quantization on popular benchmarks.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nearest Neighbor Search with Compact Codes: A Decoder Perspective\",\"authors\":\"Kenza Amara, Matthijs Douze, Alexandre Sablayrolles, Herv'e J'egou\",\"doi\":\"10.1145/3512527.3531408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern approaches for fast retrieval of similar vectors on billion-scaled datasets rely on compressed-domain approaches such as binary sketches or product quantization. These methods minimize a certain loss, typically the Mean Squared Error or other objective functions tailored to the retrieval problem. In this paper, we re-interpret popular methods such as binary hashing or product quantizers as auto-encoders, and point out that they implicitly make suboptimal assumptions on the form of the decoder. We design backward-compatible decoders that improve the reconstruction of the vectors from the same codes, which translates to a better performance in nearest neighbor search. Our method significantly improves over binary hashing methods and product quantization on popular benchmarks.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数十亿规模的数据集上快速检索相似向量的现代方法依赖于压缩域方法,如二进制草图或产品量化。这些方法将一定的损失最小化,通常是均方误差或针对检索问题定制的其他目标函数。在本文中,我们重新解释了流行的方法,如二进制哈希或乘积量化作为自编码器,并指出他们隐式地对解码器的形式做出了次优假设。我们设计了向后兼容的解码器,改进了来自相同代码的向量重建,这转化为最近邻居搜索的更好性能。我们的方法在流行的基准测试中显著改进了二进制哈希方法和产品量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nearest Neighbor Search with Compact Codes: A Decoder Perspective
Modern approaches for fast retrieval of similar vectors on billion-scaled datasets rely on compressed-domain approaches such as binary sketches or product quantization. These methods minimize a certain loss, typically the Mean Squared Error or other objective functions tailored to the retrieval problem. In this paper, we re-interpret popular methods such as binary hashing or product quantizers as auto-encoders, and point out that they implicitly make suboptimal assumptions on the form of the decoder. We design backward-compatible decoders that improve the reconstruction of the vectors from the same codes, which translates to a better performance in nearest neighbor search. Our method significantly improves over binary hashing methods and product quantization on popular benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1