电网电压不平衡条件下基于DFIG的风电系统建模

Choroq. Z El Archi, T. Nasser, Jorge Alvarado
{"title":"电网电压不平衡条件下基于DFIG的风电系统建模","authors":"Choroq. Z El Archi, T. Nasser, Jorge Alvarado","doi":"10.1109/ISAP.2017.8071374","DOIUrl":null,"url":null,"abstract":"Wind systems connected to a three-phase voltage grid often experience unbalanced voltage conditions, due to differences in the loads in the grid. This issue is particularly important in wind energy conversion systems (WECS) that use the doubly fed induction generator (DFIG). Therefore, it is important to take into account unbalanced conditions when coupling the wind generator with the grid, especially since the stator of the DFIG is directly connected to the grid. In this paper, the DFIG is modeled under low asymmetrical voltage fault in the grid in order to control the power flow between the generator and the grid. A proportional integral (PI) controller is used and simulated in the study using Matlab/Simulink. The results show that the oscillations in the electromagnetic torque and the total active power can be controlled effectively to improve the quality of the power delivered to the grid.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"1065 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling a DFIG based wind system for unbalanced grid voltage condition\",\"authors\":\"Choroq. Z El Archi, T. Nasser, Jorge Alvarado\",\"doi\":\"10.1109/ISAP.2017.8071374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind systems connected to a three-phase voltage grid often experience unbalanced voltage conditions, due to differences in the loads in the grid. This issue is particularly important in wind energy conversion systems (WECS) that use the doubly fed induction generator (DFIG). Therefore, it is important to take into account unbalanced conditions when coupling the wind generator with the grid, especially since the stator of the DFIG is directly connected to the grid. In this paper, the DFIG is modeled under low asymmetrical voltage fault in the grid in order to control the power flow between the generator and the grid. A proportional integral (PI) controller is used and simulated in the study using Matlab/Simulink. The results show that the oscillations in the electromagnetic torque and the total active power can be controlled effectively to improve the quality of the power delivered to the grid.\",\"PeriodicalId\":257100,\"journal\":{\"name\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"1065 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2017.8071374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于电网中负载的差异,连接到三相电压电网的风系统经常会遇到电压不平衡的情况。这个问题在使用双馈感应发电机(DFIG)的风能转换系统(WECS)中尤为重要。因此,考虑风力发电机与电网耦合时的不平衡条件是很重要的,特别是由于DFIG的定子直接与电网相连。为了控制发电机与电网之间的潮流,本文在电网低电压不对称故障的情况下对DFIG进行建模。本文采用了比例积分(PI)控制器,并利用Matlab/Simulink进行了仿真。结果表明,该方法能有效地控制电磁转矩和总有功功率的振荡,提高输电网供电质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling a DFIG based wind system for unbalanced grid voltage condition
Wind systems connected to a three-phase voltage grid often experience unbalanced voltage conditions, due to differences in the loads in the grid. This issue is particularly important in wind energy conversion systems (WECS) that use the doubly fed induction generator (DFIG). Therefore, it is important to take into account unbalanced conditions when coupling the wind generator with the grid, especially since the stator of the DFIG is directly connected to the grid. In this paper, the DFIG is modeled under low asymmetrical voltage fault in the grid in order to control the power flow between the generator and the grid. A proportional integral (PI) controller is used and simulated in the study using Matlab/Simulink. The results show that the oscillations in the electromagnetic torque and the total active power can be controlled effectively to improve the quality of the power delivered to the grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a multi-agent system for distributed voltage regulation Machine learning versus ray-tracing to forecast irradiance for an edge-computing SkyImager Modified teaching-learning based optimization algorithm and damping of inter-area oscillations through VSC-HVDC Intelligent system for automatic performance evaluation of distribution system operators Methodology for islanding operation of distributed synchronous generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1