观测者参照系波动对黑体辐射的影响

Y. Shin
{"title":"观测者参照系波动对黑体辐射的影响","authors":"Y. Shin","doi":"10.24018/ejphysics.2022.4.3.176","DOIUrl":null,"url":null,"abstract":"This paper describes how the characteristics of blackbody radiation are affected by the observer’s frame of reference (OFR). To date, the specific intensity of a photon emitted by a blackbody has been studied based on the assumption that the OFR remains constant throughout the performance of measurements of the specific intensity; thus, how much the specific intensity of the photon is affected by fluctuations in the OFR remains unknown. In this paper, the specific intensity of a photon emitted by a blackbody is considered as the OFR fluctuates. The average specific intensity of a photon is formulated for two types of variations in the OFR with time: periodic square-wave and periodic sawtooth fluctuations. For these two types of fluctuations, the average specific intensity of a photon that has a frequency much higher than that corresponding to the amplitude of the changes in the OFR is found to be always lower than for a stationary OFR. It is also found that the average specific intensity is inversely proportional to the temperature in the limit that the temperature is much higher than that corresponding to the amplitude of these changes. The average specific intensity of a photon in a fluctuating OFR could be used to explain the characteristics of the cosmic microwave background radiation as observed by an observer located in the cosmic background.","PeriodicalId":292629,"journal":{"name":"European Journal of Applied Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Fluctuations in the Observer’s Frame of Reference on Blackbody Radiation\",\"authors\":\"Y. Shin\",\"doi\":\"10.24018/ejphysics.2022.4.3.176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how the characteristics of blackbody radiation are affected by the observer’s frame of reference (OFR). To date, the specific intensity of a photon emitted by a blackbody has been studied based on the assumption that the OFR remains constant throughout the performance of measurements of the specific intensity; thus, how much the specific intensity of the photon is affected by fluctuations in the OFR remains unknown. In this paper, the specific intensity of a photon emitted by a blackbody is considered as the OFR fluctuates. The average specific intensity of a photon is formulated for two types of variations in the OFR with time: periodic square-wave and periodic sawtooth fluctuations. For these two types of fluctuations, the average specific intensity of a photon that has a frequency much higher than that corresponding to the amplitude of the changes in the OFR is found to be always lower than for a stationary OFR. It is also found that the average specific intensity is inversely proportional to the temperature in the limit that the temperature is much higher than that corresponding to the amplitude of these changes. The average specific intensity of a photon in a fluctuating OFR could be used to explain the characteristics of the cosmic microwave background radiation as observed by an observer located in the cosmic background.\",\"PeriodicalId\":292629,\"journal\":{\"name\":\"European Journal of Applied Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2022.4.3.176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2022.4.3.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了黑体辐射特性受观测者参照系(OFR)的影响。迄今为止,研究黑体发射的光子的比强度是基于在比强度测量的整个过程中OFR保持恒定的假设;因此,光子的比强度受OFR波动的影响程度仍是未知的。本文考虑了黑体发射光子的比强度随OFR波动的情况。光子的平均比强度是为OFR随时间的两种类型的变化而制定的:周期性方波波动和周期性锯齿波动。对于这两种类型的波动,发现频率远高于OFR变化幅度对应的光子的平均比强度始终低于固定OFR。还发现,平均比强度与温度成反比,在极限温度远高于相应的这些变化幅度。波动OFR中光子的平均比强度可以用来解释位于宇宙背景中的观测者所观测到的宇宙微波背景辐射的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Fluctuations in the Observer’s Frame of Reference on Blackbody Radiation
This paper describes how the characteristics of blackbody radiation are affected by the observer’s frame of reference (OFR). To date, the specific intensity of a photon emitted by a blackbody has been studied based on the assumption that the OFR remains constant throughout the performance of measurements of the specific intensity; thus, how much the specific intensity of the photon is affected by fluctuations in the OFR remains unknown. In this paper, the specific intensity of a photon emitted by a blackbody is considered as the OFR fluctuates. The average specific intensity of a photon is formulated for two types of variations in the OFR with time: periodic square-wave and periodic sawtooth fluctuations. For these two types of fluctuations, the average specific intensity of a photon that has a frequency much higher than that corresponding to the amplitude of the changes in the OFR is found to be always lower than for a stationary OFR. It is also found that the average specific intensity is inversely proportional to the temperature in the limit that the temperature is much higher than that corresponding to the amplitude of these changes. The average specific intensity of a photon in a fluctuating OFR could be used to explain the characteristics of the cosmic microwave background radiation as observed by an observer located in the cosmic background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back Reaction of the Electromagnetic Radiation and the Local Inertial Frame ChatGPT on the Cosmic Microwave Background Equation of Motion for the Electron or Proton Cores in Free Space According to the Planck Vacuum Theory The Ergo Region of the Kerr Black Hole in the Isotropic Coordinate ChatGPT on the Sagnac Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1