基于差分进化的多目标分类特征选择

Bing Xue, Wenlong Fu, Mengjie Zhang
{"title":"基于差分进化的多目标分类特征选择","authors":"Bing Xue, Wenlong Fu, Mengjie Zhang","doi":"10.1145/2598394.2598493","DOIUrl":null,"url":null,"abstract":"Feature selection has two main conflicting objectives, which are to minimise the number of features and maximise the classification accuracy. Evolutionary computation techniques are particularly suitable for solving mult-objective tasks. Based on differential evolution (DE), this paper develops a multi-objective feature selection algorithm (DEMOFS). DEMOFS is examined and compared with two traditional feature selection algorithms and a DE based single objective feature selection algorithm. DEFS aims to minimise the classification error rate of the selected features. Experiments on nine benchmark datasets show that DEMOFS can successfully obtain a set of non-dominated feature subsets, which include a smaller number of features and maintain or improve the classification performance over using all features. In almost all cases, DEMOFS outperforms DEFS and the two traditional feature selection methods in terms of both the number of features and the classification performance.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Differential evolution (DE) for multi-objective feature selection in classification\",\"authors\":\"Bing Xue, Wenlong Fu, Mengjie Zhang\",\"doi\":\"10.1145/2598394.2598493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection has two main conflicting objectives, which are to minimise the number of features and maximise the classification accuracy. Evolutionary computation techniques are particularly suitable for solving mult-objective tasks. Based on differential evolution (DE), this paper develops a multi-objective feature selection algorithm (DEMOFS). DEMOFS is examined and compared with two traditional feature selection algorithms and a DE based single objective feature selection algorithm. DEFS aims to minimise the classification error rate of the selected features. Experiments on nine benchmark datasets show that DEMOFS can successfully obtain a set of non-dominated feature subsets, which include a smaller number of features and maintain or improve the classification performance over using all features. In almost all cases, DEMOFS outperforms DEFS and the two traditional feature selection methods in terms of both the number of features and the classification performance.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

特征选择有两个主要的相互冲突的目标,即最小化特征数量和最大化分类精度。进化计算技术特别适合解决多目标任务。基于差分进化,提出了一种多目标特征选择算法(DEMOFS)。对两种传统的特征选择算法和基于DE的单目标特征选择算法进行了检验和比较。DEFS的目标是最小化所选特征的分类错误率。在9个基准数据集上的实验表明,DEMOFS可以成功地获得一组非支配特征子集,其中包含的特征数量较少,并且与使用所有特征相比,可以保持或提高分类性能。在几乎所有情况下,DEMOFS在特征数量和分类性能方面都优于DEFS和两种传统的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential evolution (DE) for multi-objective feature selection in classification
Feature selection has two main conflicting objectives, which are to minimise the number of features and maximise the classification accuracy. Evolutionary computation techniques are particularly suitable for solving mult-objective tasks. Based on differential evolution (DE), this paper develops a multi-objective feature selection algorithm (DEMOFS). DEMOFS is examined and compared with two traditional feature selection algorithms and a DE based single objective feature selection algorithm. DEFS aims to minimise the classification error rate of the selected features. Experiments on nine benchmark datasets show that DEMOFS can successfully obtain a set of non-dominated feature subsets, which include a smaller number of features and maintain or improve the classification performance over using all features. In almost all cases, DEMOFS outperforms DEFS and the two traditional feature selection methods in terms of both the number of features and the classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1