{"title":"CPU和GPU上道路交通仿真速度的比较","authors":"Daniel Rajf, T. Potuzak","doi":"10.1109/DS-RT47707.2019.8958702","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a fair comparison of the performance of a microscopic road traffic simulation performed on a GPU and on a CPU. The aim of our work is to determine the speedup, which can be achieved if the GPU is used for the same simulation instead of the (multi-core) CPU. A microscopic road traffic simulator capable of running on both platforms was created for this purpose with the aim to make the GPU-based and the CPU-based simulations as similar as possible. The performances of both the GPU-based and the CPU-based simulations were tested using two different road traffic models (a car-following model and a cellular automaton model), four road traffic networks (regular square grids of crossroads) of different sizes, and three different hardware configurations. The maximal achieved speedup using the GPU instead of the multi-core CPU for the cellular automaton model was 12.4. For the car-following model, the maximal achieved speedup was 10.7.","PeriodicalId":377914,"journal":{"name":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Road Traffic Simulation Speed on CPU and GPU\",\"authors\":\"Daniel Rajf, T. Potuzak\",\"doi\":\"10.1109/DS-RT47707.2019.8958702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a fair comparison of the performance of a microscopic road traffic simulation performed on a GPU and on a CPU. The aim of our work is to determine the speedup, which can be achieved if the GPU is used for the same simulation instead of the (multi-core) CPU. A microscopic road traffic simulator capable of running on both platforms was created for this purpose with the aim to make the GPU-based and the CPU-based simulations as similar as possible. The performances of both the GPU-based and the CPU-based simulations were tested using two different road traffic models (a car-following model and a cellular automaton model), four road traffic networks (regular square grids of crossroads) of different sizes, and three different hardware configurations. The maximal achieved speedup using the GPU instead of the multi-core CPU for the cellular automaton model was 12.4. For the car-following model, the maximal achieved speedup was 10.7.\",\"PeriodicalId\":377914,\"journal\":{\"name\":\"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT47707.2019.8958702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT47707.2019.8958702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Road Traffic Simulation Speed on CPU and GPU
In this paper, we describe a fair comparison of the performance of a microscopic road traffic simulation performed on a GPU and on a CPU. The aim of our work is to determine the speedup, which can be achieved if the GPU is used for the same simulation instead of the (multi-core) CPU. A microscopic road traffic simulator capable of running on both platforms was created for this purpose with the aim to make the GPU-based and the CPU-based simulations as similar as possible. The performances of both the GPU-based and the CPU-based simulations were tested using two different road traffic models (a car-following model and a cellular automaton model), four road traffic networks (regular square grids of crossroads) of different sizes, and three different hardware configurations. The maximal achieved speedup using the GPU instead of the multi-core CPU for the cellular automaton model was 12.4. For the car-following model, the maximal achieved speedup was 10.7.