识别澳大利亚推特圈中的机器人

Brenda Moon
{"title":"识别澳大利亚推特圈中的机器人","authors":"Brenda Moon","doi":"10.1145/3097286.3097335","DOIUrl":null,"url":null,"abstract":"Identification of bots on Twitter can be difficult, and successful approaches often use an iterative workflow, applying different techniques to identify discrete groups of bots. This paper presents first results of the application of this iterative workflow to the Australian TrISMA collection, which contains the tweets of over 4 million Twitter accounts identified as being Australian. To our knowledge, this research undertakes the first comprehensive identification of bots in the Australian Twittersphere. The identified bots are then classified by bot type before the proportion of overall account and tweet numbers they represent is determined.","PeriodicalId":130378,"journal":{"name":"Proceedings of the 8th International Conference on Social Media & Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Identifying Bots in the Australian Twittersphere\",\"authors\":\"Brenda Moon\",\"doi\":\"10.1145/3097286.3097335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of bots on Twitter can be difficult, and successful approaches often use an iterative workflow, applying different techniques to identify discrete groups of bots. This paper presents first results of the application of this iterative workflow to the Australian TrISMA collection, which contains the tweets of over 4 million Twitter accounts identified as being Australian. To our knowledge, this research undertakes the first comprehensive identification of bots in the Australian Twittersphere. The identified bots are then classified by bot type before the proportion of overall account and tweet numbers they represent is determined.\",\"PeriodicalId\":130378,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Social Media & Society\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Social Media & Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097286.3097335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Social Media & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097286.3097335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

识别Twitter上的机器人可能很困难,成功的方法通常使用迭代的工作流程,应用不同的技术来识别离散的机器人组。本文介绍了将此迭代工作流应用于澳大利亚TrISMA集合的第一个结果,该集合包含超过400万个被确定为澳大利亚的Twitter帐户的推文。据我们所知,这项研究首次全面识别了澳大利亚twitter领域的机器人。然后根据机器人类型对识别出来的机器人进行分类,然后确定它们所代表的整体账户和推文数量的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Bots in the Australian Twittersphere
Identification of bots on Twitter can be difficult, and successful approaches often use an iterative workflow, applying different techniques to identify discrete groups of bots. This paper presents first results of the application of this iterative workflow to the Australian TrISMA collection, which contains the tweets of over 4 million Twitter accounts identified as being Australian. To our knowledge, this research undertakes the first comprehensive identification of bots in the Australian Twittersphere. The identified bots are then classified by bot type before the proportion of overall account and tweet numbers they represent is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Glyphexts (Glyphs + Text = Effect) as Information Divide: Screen Reader Impact on Interpreting Sentimentality in Online Social Media Review Posts How Celebrities Feed Tweeples with Personal and Promotional Tweets: Celebrity Twitter Use and Audience Engagement Strategic Temporality on Social Media During the General Election of the 2016 U.S. Presidential Campaign Introduction to the 2017 International Conference on Social Media and Society The Presentation of Selfie in Everyday Life: Considering the Relationship Between Social Media Design and User in the Online Actions and Interactions of Young People
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1