基于稀疏TDOA指纹的室内定位

Guanglie Ouyang, Tinghao Qi, Lixiao Wei, Bang Wang
{"title":"基于稀疏TDOA指纹的室内定位","authors":"Guanglie Ouyang, Tinghao Qi, Lixiao Wei, Bang Wang","doi":"10.1109/CSE57773.2022.00010","DOIUrl":null,"url":null,"abstract":"Fingerprint-based indoor localization methods usually use received signal strength (RSS) and channel status information (CSI) as the localization fingerprint, which suffers from time-consuming and labor-intensive site survey. In this paper, we propose an indoor localization method based on sparse time difference of arrival (TDOA) fingerprints. This method constructs the localization fingerprints by TDOA, which is calibrated by the straight line fitting method and the beacon estimation method. In order to get the dense fingerprint database, we propose a TDOA interpolation method based on distance relation. Experiments on field measurements validate the effectiveness of the proposed method. In the case of only sampling three reference points (RPs), the average localization error (ALE) of the proposed method reaches 0.824 m, which obtains a 48.8 % improvement compared with the traditional TDOA algorithm,","PeriodicalId":165085,"journal":{"name":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor Localization Based on Sparse TDOA Fingerprints\",\"authors\":\"Guanglie Ouyang, Tinghao Qi, Lixiao Wei, Bang Wang\",\"doi\":\"10.1109/CSE57773.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fingerprint-based indoor localization methods usually use received signal strength (RSS) and channel status information (CSI) as the localization fingerprint, which suffers from time-consuming and labor-intensive site survey. In this paper, we propose an indoor localization method based on sparse time difference of arrival (TDOA) fingerprints. This method constructs the localization fingerprints by TDOA, which is calibrated by the straight line fitting method and the beacon estimation method. In order to get the dense fingerprint database, we propose a TDOA interpolation method based on distance relation. Experiments on field measurements validate the effectiveness of the proposed method. In the case of only sampling three reference points (RPs), the average localization error (ALE) of the proposed method reaches 0.824 m, which obtains a 48.8 % improvement compared with the traditional TDOA algorithm,\",\"PeriodicalId\":165085,\"journal\":{\"name\":\"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSE57773.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE57773.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于指纹的室内定位方法通常采用接收信号强度(RSS)和通道状态信息(CSI)作为定位指纹,存在现场调查费时费力的问题。本文提出了一种基于稀疏到达时间差(TDOA)指纹的室内定位方法。该方法采用直线拟合和信标估计相结合的方法构建定位指纹。为了获得密集的指纹数据库,提出了一种基于距离关系的TDOA插值方法。现场实测实验验证了该方法的有效性。在仅采样3个参考点的情况下,该方法的平均定位误差(ALE)达到0.824 m,比传统的TDOA算法提高了48.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor Localization Based on Sparse TDOA Fingerprints
Fingerprint-based indoor localization methods usually use received signal strength (RSS) and channel status information (CSI) as the localization fingerprint, which suffers from time-consuming and labor-intensive site survey. In this paper, we propose an indoor localization method based on sparse time difference of arrival (TDOA) fingerprints. This method constructs the localization fingerprints by TDOA, which is calibrated by the straight line fitting method and the beacon estimation method. In order to get the dense fingerprint database, we propose a TDOA interpolation method based on distance relation. Experiments on field measurements validate the effectiveness of the proposed method. In the case of only sampling three reference points (RPs), the average localization error (ALE) of the proposed method reaches 0.824 m, which obtains a 48.8 % improvement compared with the traditional TDOA algorithm,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Network Approximation of Simulation-based IDS Fitness Evaluation Analysis of student e-learning engagement using learning affect: Hybrid of facial emotions and domain model LED Dynamic Marker and Tracking Algorithm for External Camera Positioning Improving the System Identification of Transonic Wind Tunnel by a Regression Ensemble-Based Outlier Mining Method Data-driven Prior for Pharmaceutical Snapshot Spectral Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1