有理稀疏性提升准则的全局优化方法

M. Castella, J. Pesquet
{"title":"有理稀疏性提升准则的全局优化方法","authors":"M. Castella, J. Pesquet","doi":"10.23919/EUSIPCO.2017.8081188","DOIUrl":null,"url":null,"abstract":"We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A global optimization approach for rational sparsity promoting criteria\",\"authors\":\"M. Castella, J. Pesquet\",\"doi\":\"10.23919/EUSIPCO.2017.8081188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了通过非线性模型观测到的被加性噪声破坏的未知信号的恢复问题。更准确地说,非线性退化由一个卷积和一个非线性有理变换组成。作为先验信息,假设原始信号是稀疏的。我们通过最小化一个最小二乘拟合标准来解决这个问题,这个标准被一个类似于杰曼-麦克卢尔的势所惩罚。为了找到这一理性最小化问题的全局最优解,我们将其转化为广义矩问题,对于广义矩问题,可以使用层次的半定规划松弛。为了克服在涉及变量数量上的计算限制,问题的结构被仔细地处理,产生能够处理多达数百个优化变量的稀疏松弛。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A global optimization approach for rational sparsity promoting criteria
We consider the problem of recovering an unknown signal observed through a nonlinear model and corrupted with additive noise. More precisely, the nonlinear degradation consists of a convolution followed by a nonlinear rational transform. As a prior information, the original signal is assumed to be sparse. We tackle the problem by minimizing a least-squares fit criterion penalized by a Geman-McClure like potential. In order to find a globally optimal solution to this rational minimization problem, we transform it in a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be used. To overcome computational limitations on the number of involved variables, the structure of the problem is carefully addressed, yielding a sparse relaxation able to deal with up to several hundreds of optimized variables. Our experiments show the good performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1