{"title":"利用脉冲激励的高速率超声链路用于植入式生物医学微系统的数据遥测","authors":"Keivan Keramatzadeh, A. M. Sodagar","doi":"10.1109/LSC.2018.8572111","DOIUrl":null,"url":null,"abstract":"This paper reports on the design, simulation, and test of an ultrasonic data telemetry link. A pulse-based data telemetry technique is suggested in this paper, which aims at the suppression of the residual tail of oscillations that naturally follows the response of an ultrasonic transducer to a rectangular pulse. This is made possible by the introduction of a line encoding scheme that suggests the use of an excitatory/inhibitory complex rather than a single excitatory pulse. Efficacy of the technique suggested in this paper was verified through modeling and testing a complete ultrasonic data telemetry link including the transmitting and receiving transducers, as well as the signal conditioning and data recovery blocks on the receiver side. According to the results for transducers with the resonance frequency of 1MHz and saline as the communication channel, a maximum bit rate of 350kbps was achieved.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Rate Ultrasonic Link for Data Telemetry to Implantable Biomedical Microsystems Using Pulse Excitation\",\"authors\":\"Keivan Keramatzadeh, A. M. Sodagar\",\"doi\":\"10.1109/LSC.2018.8572111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the design, simulation, and test of an ultrasonic data telemetry link. A pulse-based data telemetry technique is suggested in this paper, which aims at the suppression of the residual tail of oscillations that naturally follows the response of an ultrasonic transducer to a rectangular pulse. This is made possible by the introduction of a line encoding scheme that suggests the use of an excitatory/inhibitory complex rather than a single excitatory pulse. Efficacy of the technique suggested in this paper was verified through modeling and testing a complete ultrasonic data telemetry link including the transmitting and receiving transducers, as well as the signal conditioning and data recovery blocks on the receiver side. According to the results for transducers with the resonance frequency of 1MHz and saline as the communication channel, a maximum bit rate of 350kbps was achieved.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Rate Ultrasonic Link for Data Telemetry to Implantable Biomedical Microsystems Using Pulse Excitation
This paper reports on the design, simulation, and test of an ultrasonic data telemetry link. A pulse-based data telemetry technique is suggested in this paper, which aims at the suppression of the residual tail of oscillations that naturally follows the response of an ultrasonic transducer to a rectangular pulse. This is made possible by the introduction of a line encoding scheme that suggests the use of an excitatory/inhibitory complex rather than a single excitatory pulse. Efficacy of the technique suggested in this paper was verified through modeling and testing a complete ultrasonic data telemetry link including the transmitting and receiving transducers, as well as the signal conditioning and data recovery blocks on the receiver side. According to the results for transducers with the resonance frequency of 1MHz and saline as the communication channel, a maximum bit rate of 350kbps was achieved.