Li-Bin Duan, Liwei Shi, Shuxiang Guo, Pengxiao Bao
{"title":"基于FLUENT的飞机巡航特性气动仿真","authors":"Li-Bin Duan, Liwei Shi, Shuxiang Guo, Pengxiao Bao","doi":"10.1109/ICMA54519.2022.9856231","DOIUrl":null,"url":null,"abstract":"The frame structure of the aircraft and the aerodynamic layout of the main components are closely related to the dynamic characteristics of the aircraft and the aerodynamic forces it receives, which determine the aircraft characteristics and performance indicators of the aircraft. In order to study whether the performance index of the control system meets the actual requirements and the influence of the change of the relevant initial conditions on the aerodynamic characteristics of the aircraft. According to the cruising requirements, we independent design of aircraft model, determine the calculation area of the aircraft and use a new mesh generation technique to generate an unstructured polyhedral mesh and also select a suitable calculation model according to the discrete characteristics of the equation and set the relevant initial conditions of the aircraft and at last uses ANSYS FLUENT to carry out the aerodynamic simulation calculation of the aircraft. The data analysis of the simulation results is achieved, the pressure contour, the vorticity contour, velocity vector contour and streamline contour of the aircraft surface are analyzed. Meanwhile, the lift coefficient, the drag coefficient and the optimum speed for high altitude flight of the aircraft are obtained. The study of the changing law can provide the basis and reference for the aerodynamic flight performance of the aircraft.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic Simulation of Aircraft Crusing Characteristics Based on FLUENT\",\"authors\":\"Li-Bin Duan, Liwei Shi, Shuxiang Guo, Pengxiao Bao\",\"doi\":\"10.1109/ICMA54519.2022.9856231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frame structure of the aircraft and the aerodynamic layout of the main components are closely related to the dynamic characteristics of the aircraft and the aerodynamic forces it receives, which determine the aircraft characteristics and performance indicators of the aircraft. In order to study whether the performance index of the control system meets the actual requirements and the influence of the change of the relevant initial conditions on the aerodynamic characteristics of the aircraft. According to the cruising requirements, we independent design of aircraft model, determine the calculation area of the aircraft and use a new mesh generation technique to generate an unstructured polyhedral mesh and also select a suitable calculation model according to the discrete characteristics of the equation and set the relevant initial conditions of the aircraft and at last uses ANSYS FLUENT to carry out the aerodynamic simulation calculation of the aircraft. The data analysis of the simulation results is achieved, the pressure contour, the vorticity contour, velocity vector contour and streamline contour of the aircraft surface are analyzed. Meanwhile, the lift coefficient, the drag coefficient and the optimum speed for high altitude flight of the aircraft are obtained. The study of the changing law can provide the basis and reference for the aerodynamic flight performance of the aircraft.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aerodynamic Simulation of Aircraft Crusing Characteristics Based on FLUENT
The frame structure of the aircraft and the aerodynamic layout of the main components are closely related to the dynamic characteristics of the aircraft and the aerodynamic forces it receives, which determine the aircraft characteristics and performance indicators of the aircraft. In order to study whether the performance index of the control system meets the actual requirements and the influence of the change of the relevant initial conditions on the aerodynamic characteristics of the aircraft. According to the cruising requirements, we independent design of aircraft model, determine the calculation area of the aircraft and use a new mesh generation technique to generate an unstructured polyhedral mesh and also select a suitable calculation model according to the discrete characteristics of the equation and set the relevant initial conditions of the aircraft and at last uses ANSYS FLUENT to carry out the aerodynamic simulation calculation of the aircraft. The data analysis of the simulation results is achieved, the pressure contour, the vorticity contour, velocity vector contour and streamline contour of the aircraft surface are analyzed. Meanwhile, the lift coefficient, the drag coefficient and the optimum speed for high altitude flight of the aircraft are obtained. The study of the changing law can provide the basis and reference for the aerodynamic flight performance of the aircraft.