基于密集卷积和深度可分离卷积的视网膜血管图像语义分割

Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang
{"title":"基于密集卷积和深度可分离卷积的视网膜血管图像语义分割","authors":"Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang","doi":"10.1109/SiPS47522.2019.9020322","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation of Retinal Vessel Images via Dense Convolution and Depth Separable Convolution\",\"authors\":\"Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang\",\"doi\":\"10.1109/SiPS47522.2019.9020322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视网膜血管图像的语义分割对临床诊断有重要价值。由于视网膜血管特征信息复杂,现有算法存在分割血管不连续性等问题。为了获得更好的语义分割效果,我们提出了一种结合密集卷积和深度可分离卷积的编码器-解码器结构。首先提取原始绿色通道,限制对比度直方图均衡化和锐化,对图像进行增强,然后进行数据论证,扩大数据集。其次,利用加权损失函数对处理后的图像进行训练。最后,用训练好的模型对测试图像进行分割。在DRIVE数据集上对该算法进行了测试,其平均准确率、灵敏度和特异性分别达到96.83%、83.71%和98.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Segmentation of Retinal Vessel Images via Dense Convolution and Depth Separable Convolution
Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1