Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang
{"title":"基于密集卷积和深度可分离卷积的视网膜血管图像语义分割","authors":"Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang","doi":"10.1109/SiPS47522.2019.9020322","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation of Retinal Vessel Images via Dense Convolution and Depth Separable Convolution\",\"authors\":\"Zihui Zhu, Hengrui Gu, Zhengming Zhang, Yongming Huang, Luxi Yang\",\"doi\":\"10.1109/SiPS47522.2019.9020322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semantic Segmentation of Retinal Vessel Images via Dense Convolution and Depth Separable Convolution
Semantic segmentation of retinal vessel images is of great value for clinical diagnosis. Due to the complex information of retinal vessel features, the existing algorithms have problems such as discontinuities of segmented vessels. To achieve better semantic segmentation results, we propose an encoder-decoder structure combined with dense convolution and depth separable convolution. Firstly, the images are enhanced by extracting the original green channel, limiting contrast histogram equalization and sharpening, then data argumentation is performed to expand the data set. Secondly, the processed images are trained by the proposed network using a weighted loss function. Finally, the test images are segmented by the trained model. The proposed algorithm is tested on the DRIVE data set, and its average accuracy, sensitivity and specificity reached 96.83%, 83.71%, and 98.95%, respectively.