Ulfa Destiarina, Mustika Hadijati, D. Komalasari, Nurul Fitriyani
{"title":"以巴耶西安·马尔科夫链的方法计算指数的混频器和维布里尔的配送参数","authors":"Ulfa Destiarina, Mustika Hadijati, D. Komalasari, Nurul Fitriyani","doi":"10.29303/EMJ.V1I1.30","DOIUrl":null,"url":null,"abstract":"In parameter estimation, sometimes there are several problems that require the completion of a mixture distribution. This study aimed to apply the parameter estimation of exponential and Weibull mixture distribution in simulation data using the Bayesian Markov Chain Monte Carlo (MCMC) estimation method. The results obtained indicate that the analytic calculations of parameter estimation were more accurate than the calculations with the help of software, based on the terms of the suitability of the theory and its integration process.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimasi Parameter Distribusi Mixture Eksponensial dan Weibull dengan Metode Bayesian Markov Chain Monte Carlo\",\"authors\":\"Ulfa Destiarina, Mustika Hadijati, D. Komalasari, Nurul Fitriyani\",\"doi\":\"10.29303/EMJ.V1I1.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In parameter estimation, sometimes there are several problems that require the completion of a mixture distribution. This study aimed to apply the parameter estimation of exponential and Weibull mixture distribution in simulation data using the Bayesian Markov Chain Monte Carlo (MCMC) estimation method. The results obtained indicate that the analytic calculations of parameter estimation were more accurate than the calculations with the help of software, based on the terms of the suitability of the theory and its integration process.\",\"PeriodicalId\":281429,\"journal\":{\"name\":\"EIGEN MATHEMATICS JOURNAL\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EIGEN MATHEMATICS JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/EMJ.V1I1.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/EMJ.V1I1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimasi Parameter Distribusi Mixture Eksponensial dan Weibull dengan Metode Bayesian Markov Chain Monte Carlo
In parameter estimation, sometimes there are several problems that require the completion of a mixture distribution. This study aimed to apply the parameter estimation of exponential and Weibull mixture distribution in simulation data using the Bayesian Markov Chain Monte Carlo (MCMC) estimation method. The results obtained indicate that the analytic calculations of parameter estimation were more accurate than the calculations with the help of software, based on the terms of the suitability of the theory and its integration process.