正向和反向线性阈值排序

M. Blesa, Pau García-Rodríguez, M. Serna
{"title":"正向和反向线性阈值排序","authors":"M. Blesa, Pau García-Rodríguez, M. Serna","doi":"10.1145/3487351.3488355","DOIUrl":null,"url":null,"abstract":"We propose the FwLTR and BwLTR, two new centrality measures based on the Linear Threshold model. In contrast to the Linear Threshold rank (LTR), these measures differentiate between the incoming and the outgoing neighborhoods of the activation set that initiates the spreading process. Their rankings are distinguishable from the rest of the centrality measures considered traditionally. However, LTR and BwLTR behave quite similarly, while FwLTR is clearly different.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Forward and backward linear threshold ranks\",\"authors\":\"M. Blesa, Pau García-Rodríguez, M. Serna\",\"doi\":\"10.1145/3487351.3488355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the FwLTR and BwLTR, two new centrality measures based on the Linear Threshold model. In contrast to the Linear Threshold rank (LTR), these measures differentiate between the incoming and the outgoing neighborhoods of the activation set that initiates the spreading process. Their rankings are distinguishable from the rest of the centrality measures considered traditionally. However, LTR and BwLTR behave quite similarly, while FwLTR is clearly different.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了两个新的基于线性阈值模型的中心性测度FwLTR和BwLTR。与线性阈值秩(LTR)相反,这些度量区分启动传播过程的激活集的传入和传出邻域。他们的排名与传统上考虑的其他中心性指标不同。然而,LTR和BwLTR的行为非常相似,而FwLTR则明显不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forward and backward linear threshold ranks
We propose the FwLTR and BwLTR, two new centrality measures based on the Linear Threshold model. In contrast to the Linear Threshold rank (LTR), these measures differentiate between the incoming and the outgoing neighborhoods of the activation set that initiates the spreading process. Their rankings are distinguishable from the rest of the centrality measures considered traditionally. However, LTR and BwLTR behave quite similarly, while FwLTR is clearly different.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1