Rodrigo Cabral Farias, J. H. D. M. Goulart, P. Comon
{"title":"相干约束交替最小二乘","authors":"Rodrigo Cabral Farias, J. H. D. M. Goulart, P. Comon","doi":"10.23919/EUSIPCO.2018.8553084","DOIUrl":null,"url":null,"abstract":"In this paper we present a modification of alternating least squares (ALS) for tensor canonical polyadic approximation that takes into account mutual coherence constraints. The proposed algorithm can be used to ensure well-posedness of the tensor approximation problem during ALS iterates and so is an alternative to existing approaches. We conduct tests with the proposed approach by using it as initialization of unconstrained alternating least squares in difficult cases, when the underlying tensor model factors have nearly collinear columns and the unconstrained approach is prone to a degenerate behavior, failing to converge or converging slowly to an acceptable solution. The results of the tested cases indicate that by using such an initialization the unconstrained approach seems to avoid such a behavior.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coherence Constrained Alternating Least Squares\",\"authors\":\"Rodrigo Cabral Farias, J. H. D. M. Goulart, P. Comon\",\"doi\":\"10.23919/EUSIPCO.2018.8553084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a modification of alternating least squares (ALS) for tensor canonical polyadic approximation that takes into account mutual coherence constraints. The proposed algorithm can be used to ensure well-posedness of the tensor approximation problem during ALS iterates and so is an alternative to existing approaches. We conduct tests with the proposed approach by using it as initialization of unconstrained alternating least squares in difficult cases, when the underlying tensor model factors have nearly collinear columns and the unconstrained approach is prone to a degenerate behavior, failing to converge or converging slowly to an acceptable solution. The results of the tested cases indicate that by using such an initialization the unconstrained approach seems to avoid such a behavior.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a modification of alternating least squares (ALS) for tensor canonical polyadic approximation that takes into account mutual coherence constraints. The proposed algorithm can be used to ensure well-posedness of the tensor approximation problem during ALS iterates and so is an alternative to existing approaches. We conduct tests with the proposed approach by using it as initialization of unconstrained alternating least squares in difficult cases, when the underlying tensor model factors have nearly collinear columns and the unconstrained approach is prone to a degenerate behavior, failing to converge or converging slowly to an acceptable solution. The results of the tested cases indicate that by using such an initialization the unconstrained approach seems to avoid such a behavior.