{"title":"一种采用变容负载、堆叠LC谐振器的双频SiGe HBT频率可调移相差分放大器","authors":"K. Sakamoto, Y. Itoh","doi":"10.1155/2012/157971","DOIUrl":null,"url":null,"abstract":"A dual-band SiGe HBT frequency-tunable and phase-shifting differential amplifier has been developed for the future active phased array antennas with a multiband, multibeam, and multitarget tracking operation. The amplifier uses varactor-loaded, stacked LC resonators in the design of the output circuit in order to provide frequency-tunable and phase-shifting capabilities for dual frequencies. By utilizing the varactor-loaded LC resonator, which has a variable resonant frequency and a large insertion phase variation, frequency-tunable and phase-shifting performances become available. Moreover, by using the stacked configuration, the frequency and insertion phase can be varied independently for dual frequencies. A dual-band SiGe HBT differential amplifier has achieved a lower-frequency tuning range of 0.56 to 0.7 GHz for a higher fixed frequency of 0.97 GHz as well as a higher-frequency tuning range of 0.92 to 1.01 GHz for a lower fixed frequency of 0.63 GHz. A lower-frequency phase variation of 99° and a higher-frequency phase variation of 90.3° have been accomplished at 0.63 and 0.97 GHz, respectively. This is the first report on the dual-band differential amplifier with frequency-tunable and phase-shifting capabilities.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Band SiGe HBT Frequency-Tunable and Phase-Shifting Differential Amplifier Employing Varactor-Loaded, Stacked LC Resonators\",\"authors\":\"K. Sakamoto, Y. Itoh\",\"doi\":\"10.1155/2012/157971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-band SiGe HBT frequency-tunable and phase-shifting differential amplifier has been developed for the future active phased array antennas with a multiband, multibeam, and multitarget tracking operation. The amplifier uses varactor-loaded, stacked LC resonators in the design of the output circuit in order to provide frequency-tunable and phase-shifting capabilities for dual frequencies. By utilizing the varactor-loaded LC resonator, which has a variable resonant frequency and a large insertion phase variation, frequency-tunable and phase-shifting performances become available. Moreover, by using the stacked configuration, the frequency and insertion phase can be varied independently for dual frequencies. A dual-band SiGe HBT differential amplifier has achieved a lower-frequency tuning range of 0.56 to 0.7 GHz for a higher fixed frequency of 0.97 GHz as well as a higher-frequency tuning range of 0.92 to 1.01 GHz for a lower fixed frequency of 0.63 GHz. A lower-frequency phase variation of 99° and a higher-frequency phase variation of 90.3° have been accomplished at 0.63 and 0.97 GHz, respectively. This is the first report on the dual-band differential amplifier with frequency-tunable and phase-shifting capabilities.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/157971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/157971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual-Band SiGe HBT Frequency-Tunable and Phase-Shifting Differential Amplifier Employing Varactor-Loaded, Stacked LC Resonators
A dual-band SiGe HBT frequency-tunable and phase-shifting differential amplifier has been developed for the future active phased array antennas with a multiband, multibeam, and multitarget tracking operation. The amplifier uses varactor-loaded, stacked LC resonators in the design of the output circuit in order to provide frequency-tunable and phase-shifting capabilities for dual frequencies. By utilizing the varactor-loaded LC resonator, which has a variable resonant frequency and a large insertion phase variation, frequency-tunable and phase-shifting performances become available. Moreover, by using the stacked configuration, the frequency and insertion phase can be varied independently for dual frequencies. A dual-band SiGe HBT differential amplifier has achieved a lower-frequency tuning range of 0.56 to 0.7 GHz for a higher fixed frequency of 0.97 GHz as well as a higher-frequency tuning range of 0.92 to 1.01 GHz for a lower fixed frequency of 0.63 GHz. A lower-frequency phase variation of 99° and a higher-frequency phase variation of 90.3° have been accomplished at 0.63 and 0.97 GHz, respectively. This is the first report on the dual-band differential amplifier with frequency-tunable and phase-shifting capabilities.