一种结构导向的稀疏表示三维地震反演方法

B. She, Yaojun Wang, Guang Hu
{"title":"一种结构导向的稀疏表示三维地震反演方法","authors":"B. She, Yaojun Wang, Guang Hu","doi":"10.1109/ICASSP39728.2021.9415071","DOIUrl":null,"url":null,"abstract":"Existing seismic inversion methods are usually 1D, mainly focusing on improving the vertical resolution of inversion results. A few 2D or 3D inversion techniques are either too simple and lack the consideration of stratigraphic structures, or are too complicated which need to extract dip information and solve a complex constrained optimization problem. In this work, with the help of gradient structure tensor (GST) and dictionary learning and sparse representation (DLSR) technologies, we propose a 3D inversion approach (GST-DLSR) that considers both vertical and horizontal structural constraints. In the vertical direction, we investigate the vertical structural features of subsurface models from well-log data by DLSR. In the horizontal direction, we obtain the stratigraphic structural features from a 3D seismic image by GST. We then apply the acquired structural features to constraint the entire inversion procedure. The experiments show that GST-DLSR takes good advantages of both techniques, enabling to produce inversion results with high resolution, good lateral continuity, and enhanced structural features.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Structure-Guided and Sparse-Representation-Based 3d Seismic Inversion Method\",\"authors\":\"B. She, Yaojun Wang, Guang Hu\",\"doi\":\"10.1109/ICASSP39728.2021.9415071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing seismic inversion methods are usually 1D, mainly focusing on improving the vertical resolution of inversion results. A few 2D or 3D inversion techniques are either too simple and lack the consideration of stratigraphic structures, or are too complicated which need to extract dip information and solve a complex constrained optimization problem. In this work, with the help of gradient structure tensor (GST) and dictionary learning and sparse representation (DLSR) technologies, we propose a 3D inversion approach (GST-DLSR) that considers both vertical and horizontal structural constraints. In the vertical direction, we investigate the vertical structural features of subsurface models from well-log data by DLSR. In the horizontal direction, we obtain the stratigraphic structural features from a 3D seismic image by GST. We then apply the acquired structural features to constraint the entire inversion procedure. The experiments show that GST-DLSR takes good advantages of both techniques, enabling to produce inversion results with high resolution, good lateral continuity, and enhanced structural features.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9415071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9415071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的地震反演方法通常是一维的,主要侧重于提高反演结果的垂向分辨率。一些二维或三维反演技术要么过于简单,缺乏对地层结构的考虑,要么过于复杂,需要提取倾角信息,求解复杂的约束优化问题。在这项工作中,借助梯度结构张量(GST)和字典学习和稀疏表示(DLSR)技术,我们提出了一种考虑垂直和水平结构约束的3D反演方法(GST-DLSR)。在垂向上,利用DLSR研究了测井资料中地下模型的垂向构造特征。在水平方向上,利用GST从三维地震图像中获取地层构造特征。然后,我们应用获得的结构特征来约束整个反演过程。实验表明,GST-DLSR综合了两种技术的优点,反演结果分辨率高,横向连续性好,结构特征增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Structure-Guided and Sparse-Representation-Based 3d Seismic Inversion Method
Existing seismic inversion methods are usually 1D, mainly focusing on improving the vertical resolution of inversion results. A few 2D or 3D inversion techniques are either too simple and lack the consideration of stratigraphic structures, or are too complicated which need to extract dip information and solve a complex constrained optimization problem. In this work, with the help of gradient structure tensor (GST) and dictionary learning and sparse representation (DLSR) technologies, we propose a 3D inversion approach (GST-DLSR) that considers both vertical and horizontal structural constraints. In the vertical direction, we investigate the vertical structural features of subsurface models from well-log data by DLSR. In the horizontal direction, we obtain the stratigraphic structural features from a 3D seismic image by GST. We then apply the acquired structural features to constraint the entire inversion procedure. The experiments show that GST-DLSR takes good advantages of both techniques, enabling to produce inversion results with high resolution, good lateral continuity, and enhanced structural features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1