{"title":"基于混合图像的深度学习射频信号分类","authors":"Hilal Elyousseph, M. Altamimi","doi":"10.1109/ICSIPA52582.2021.9576786","DOIUrl":null,"url":null,"abstract":"In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. This work focuses on the different pre-processing steps that can be used on the input training data, and tests the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, in this work a hybrid image is proposed that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. The initial results point out limitations to classical pre-processing approaches while also showing that it’s possible to build a classifier that can leverage the strengths of multiple signal representations.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Radio Frequency Signal Classification with Hybrid Images\",\"authors\":\"Hilal Elyousseph, M. Altamimi\",\"doi\":\"10.1109/ICSIPA52582.2021.9576786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. This work focuses on the different pre-processing steps that can be used on the input training data, and tests the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, in this work a hybrid image is proposed that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. The initial results point out limitations to classical pre-processing approaches while also showing that it’s possible to build a classifier that can leverage the strengths of multiple signal representations.\",\"PeriodicalId\":326688,\"journal\":{\"name\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA52582.2021.9576786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Radio Frequency Signal Classification with Hybrid Images
In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. This work focuses on the different pre-processing steps that can be used on the input training data, and tests the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, in this work a hybrid image is proposed that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. The initial results point out limitations to classical pre-processing approaches while also showing that it’s possible to build a classifier that can leverage the strengths of multiple signal representations.