基于下半身的步态识别评估

Silvia Gabriel-Sanz, R. Vera-Rodríguez, Pedro Tome, Julian Fierrez
{"title":"基于下半身的步态识别评估","authors":"Silvia Gabriel-Sanz, R. Vera-Rodríguez, Pedro Tome, Julian Fierrez","doi":"10.1109/IWBF.2013.6547321","DOIUrl":null,"url":null,"abstract":"This paper is focused on the assessment of gait recognition on a constrained scenario, where limited information can be extracted from the gait image sequences. In particular we are interested in assessing the performance of gait images when only the lower part of the body is acquired by the camera and just half of a gait cycle is available (SFootBD database). Thus, various state-of-the-art feature approaches have been followed and applied to the data. A comparison with a standard and ideal gait database (USF database) is also carried out using similar experimental protocols. Results show that good recognition performance can be achieved using such limited data information for gait biometric (around 85% of rank 5 identification rate and 8.6% of EER). The comparison with a standard database shows that different feature approaches perform differently for each database, achieving best individual results with MPCA and EGEI methods for the SFootBD and the USF database respectively.","PeriodicalId":412596,"journal":{"name":"2013 International Workshop on Biometrics and Forensics (IWBF)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Assessment of gait recognition based on the lower part of the human body\",\"authors\":\"Silvia Gabriel-Sanz, R. Vera-Rodríguez, Pedro Tome, Julian Fierrez\",\"doi\":\"10.1109/IWBF.2013.6547321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on the assessment of gait recognition on a constrained scenario, where limited information can be extracted from the gait image sequences. In particular we are interested in assessing the performance of gait images when only the lower part of the body is acquired by the camera and just half of a gait cycle is available (SFootBD database). Thus, various state-of-the-art feature approaches have been followed and applied to the data. A comparison with a standard and ideal gait database (USF database) is also carried out using similar experimental protocols. Results show that good recognition performance can be achieved using such limited data information for gait biometric (around 85% of rank 5 identification rate and 8.6% of EER). The comparison with a standard database shows that different feature approaches perform differently for each database, achieving best individual results with MPCA and EGEI methods for the SFootBD and the USF database respectively.\",\"PeriodicalId\":412596,\"journal\":{\"name\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2013.6547321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2013.6547321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文主要研究步态识别在受限场景下的评估,在受限场景下,步态图像序列只能提取有限的信息。我们特别感兴趣的是评估步态图像的性能,当只有身体的下半部分被相机捕获,只有一半的步态周期可用(SFootBD数据库)。因此,各种最先进的特征方法已被遵循并应用于数据。采用相似的实验方案,与标准步态数据库和理想步态数据库(USF数据库)进行比较。结果表明,在如此有限的数据信息下,步态生物识别可以获得良好的识别性能(约为5级识别率的85%和EER的8.6%)。与标准数据库的比较表明,不同的特征方法对每个数据库的表现不同,分别对SFootBD和USF数据库使用MPCA和EGEI方法获得最佳的单个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of gait recognition based on the lower part of the human body
This paper is focused on the assessment of gait recognition on a constrained scenario, where limited information can be extracted from the gait image sequences. In particular we are interested in assessing the performance of gait images when only the lower part of the body is acquired by the camera and just half of a gait cycle is available (SFootBD database). Thus, various state-of-the-art feature approaches have been followed and applied to the data. A comparison with a standard and ideal gait database (USF database) is also carried out using similar experimental protocols. Results show that good recognition performance can be achieved using such limited data information for gait biometric (around 85% of rank 5 identification rate and 8.6% of EER). The comparison with a standard database shows that different feature approaches perform differently for each database, achieving best individual results with MPCA and EGEI methods for the SFootBD and the USF database respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved rotation-invariant degraded partial palmprint recognition technique Telephone handset identification using sparse representations of spectral feature sketches High quality training materials to detect printed fingerprints: Benchmarking three different aquisition sensors producing printing templates Understanding the discrimination power of facial regions in forensic casework Semantic description in stereo video content for surveillance applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1