登革热发病的k步预测模型

Loshini Thiruchelvam, V. Asirvadam, S. Dass, H. Daud, B. Gill
{"title":"登革热发病的k步预测模型","authors":"Loshini Thiruchelvam, V. Asirvadam, S. Dass, H. Daud, B. Gill","doi":"10.1109/ICSIPA.2017.8120671","DOIUrl":null,"url":null,"abstract":"The paper proposed prediction model to study dengue occurrence in Malaysia, focusing on a region of Petaling district, in the state of Selangor. A number of different linear regression models were compared using model orders of lag time, and best model is selected using Akaike Information Criterion (AIC) value. First, dengue estimation models were built for Petaling district using weather variables of mean temperature, relative humidity, cumulative rainfall, and dengue feedback data. The best estimation model is then used to build dengue prediction models, using the k-steps ahead prediction (with one and multiple-step ahead predictions). One-step ahead prediction model was found to capture well pattern of dengue incidences. This information is believed to help health authorities in providing a reminder alarm to the public through medias, on precautions specifically against mosquitoes bites, especially when dengue occurrences is expected to be high.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"K-step ahead prediction models for dengue occurrences\",\"authors\":\"Loshini Thiruchelvam, V. Asirvadam, S. Dass, H. Daud, B. Gill\",\"doi\":\"10.1109/ICSIPA.2017.8120671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposed prediction model to study dengue occurrence in Malaysia, focusing on a region of Petaling district, in the state of Selangor. A number of different linear regression models were compared using model orders of lag time, and best model is selected using Akaike Information Criterion (AIC) value. First, dengue estimation models were built for Petaling district using weather variables of mean temperature, relative humidity, cumulative rainfall, and dengue feedback data. The best estimation model is then used to build dengue prediction models, using the k-steps ahead prediction (with one and multiple-step ahead predictions). One-step ahead prediction model was found to capture well pattern of dengue incidences. This information is believed to help health authorities in providing a reminder alarm to the public through medias, on precautions specifically against mosquitoes bites, especially when dengue occurrences is expected to be high.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了以马来西亚雪兰莪州Petaling地区为研究对象的登革热发生预测模型。利用滞后时间的模型阶数对多个不同的线性回归模型进行比较,并利用赤池信息准则(Akaike Information Criterion, AIC)值选择最佳模型。首先,利用平均气温、相对湿度、累积降雨量等气象变量和登革热反馈数据,建立了花瓣陵区登革热估计模型;然后使用最佳估计模型构建登革热预测模型,使用提前k步预测(提前一步和多步预测)。一步预测模型较好地反映了登革热的发病规律。这些信息被认为有助于卫生当局通过媒体向公众发出提醒警报,特别是针对蚊虫叮咬的预防措施,特别是在预计登革热发病率将很高的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-step ahead prediction models for dengue occurrences
The paper proposed prediction model to study dengue occurrence in Malaysia, focusing on a region of Petaling district, in the state of Selangor. A number of different linear regression models were compared using model orders of lag time, and best model is selected using Akaike Information Criterion (AIC) value. First, dengue estimation models were built for Petaling district using weather variables of mean temperature, relative humidity, cumulative rainfall, and dengue feedback data. The best estimation model is then used to build dengue prediction models, using the k-steps ahead prediction (with one and multiple-step ahead predictions). One-step ahead prediction model was found to capture well pattern of dengue incidences. This information is believed to help health authorities in providing a reminder alarm to the public through medias, on precautions specifically against mosquitoes bites, especially when dengue occurrences is expected to be high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1