一种用于入侵检测的主动流量分配器架构

Ioannis Charitakis, K. Anagnostakis, E. Markatos
{"title":"一种用于入侵检测的主动流量分配器架构","authors":"Ioannis Charitakis, K. Anagnostakis, E. Markatos","doi":"10.1109/MASCOT.2003.1240665","DOIUrl":null,"url":null,"abstract":"Scaling network intrusion detection to high network speeds can be achieved using multiple sensors operating in parallel coupled with a suitable load balancing traffic splitter. This paper examines a splitter architecture that incorporates two methods for improving system performance: the first is the use of early filtering where a portion of the packets is processed on the splitter instead of the sensors. The second is the use of locality buffering, where the splitter reorders packets in a way that improves memory access locality on the sensors. Our experiments suggest that early filtering reduces the number of packets to be processed by 32%, giving a 8% increase in sensor performance, while locality buffers improve sensor performance by about 10%. Combined together, the two methods result in an overall improvement of 20% while the performance of the slowest sensor is improved by 14%.","PeriodicalId":344411,"journal":{"name":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"An active traffic splitter architecture for intrusion detection\",\"authors\":\"Ioannis Charitakis, K. Anagnostakis, E. Markatos\",\"doi\":\"10.1109/MASCOT.2003.1240665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaling network intrusion detection to high network speeds can be achieved using multiple sensors operating in parallel coupled with a suitable load balancing traffic splitter. This paper examines a splitter architecture that incorporates two methods for improving system performance: the first is the use of early filtering where a portion of the packets is processed on the splitter instead of the sensors. The second is the use of locality buffering, where the splitter reorders packets in a way that improves memory access locality on the sensors. Our experiments suggest that early filtering reduces the number of packets to be processed by 32%, giving a 8% increase in sensor performance, while locality buffers improve sensor performance by about 10%. Combined together, the two methods result in an overall improvement of 20% while the performance of the slowest sensor is improved by 14%.\",\"PeriodicalId\":344411,\"journal\":{\"name\":\"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOT.2003.1240665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2003.1240665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

将网络入侵检测扩展到高网络速度可以使用多个并行运行的传感器加上合适的负载平衡流量分配器来实现。本文研究了一种包含两种改进系统性能方法的分配器架构:第一种是使用早期过滤,其中部分数据包在分配器上处理,而不是在传感器上处理。第二种是局部性缓冲的使用,在这种情况下,分配器以一种改善传感器内存访问局部性的方式对数据包进行重新排序。我们的实验表明,早期过滤将要处理的数据包数量减少了32%,从而使传感器性能提高了8%,而局部缓冲区将传感器性能提高了约10%。结合在一起,这两种方法的总体性能提高了20%,而最慢的传感器的性能提高了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An active traffic splitter architecture for intrusion detection
Scaling network intrusion detection to high network speeds can be achieved using multiple sensors operating in parallel coupled with a suitable load balancing traffic splitter. This paper examines a splitter architecture that incorporates two methods for improving system performance: the first is the use of early filtering where a portion of the packets is processed on the splitter instead of the sensors. The second is the use of locality buffering, where the splitter reorders packets in a way that improves memory access locality on the sensors. Our experiments suggest that early filtering reduces the number of packets to be processed by 32%, giving a 8% increase in sensor performance, while locality buffers improve sensor performance by about 10%. Combined together, the two methods result in an overall improvement of 20% while the performance of the slowest sensor is improved by 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An open tool to compute stochastic bounds on steady-state distributions and rewards Twotowers 3.0: enhancing usability Analysis of design alternatives for reverse proxy cache providers MQNA - Markovian queueing networks analyser Zone-based shortest positioning time first scheduling for MEMS-based storage devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1