{"title":"基于动态缓存分配的全局抢占式固定优先级调度的分析与实现","authors":"Meng Xu, L. T. Phan, Hyon-Young Choi, Insup Lee","doi":"10.1109/RTAS.2016.7461322","DOIUrl":null,"url":null,"abstract":"We introduce gFPca, a cache-aware global pre-emptive fixed-priority (FP) scheduling algorithm with dynamic cache allocation for multicore systems, and we present its analysis and implementation. We introduce a new overhead-aware analysis that integrates several novel ideas to safely and tightly account for the cache overhead. Our evaluation shows that the proposed overhead-accounting approach is highly accurate, and that gFPca improves the schedulability of cache-intensive tasksets substantially compared to the cache-agnostic global FP algorithm. Our evaluation also shows that gFPca outperforms the existing cache-aware non- preemptive global FP algorithm in most cases. Through our implementation and empirical evaluation, we demonstrate the feasibility of cache-aware global scheduling with dynamic cache allocation and highlight scenarios in which gFPca is especially useful in practice.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation\",\"authors\":\"Meng Xu, L. T. Phan, Hyon-Young Choi, Insup Lee\",\"doi\":\"10.1109/RTAS.2016.7461322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce gFPca, a cache-aware global pre-emptive fixed-priority (FP) scheduling algorithm with dynamic cache allocation for multicore systems, and we present its analysis and implementation. We introduce a new overhead-aware analysis that integrates several novel ideas to safely and tightly account for the cache overhead. Our evaluation shows that the proposed overhead-accounting approach is highly accurate, and that gFPca improves the schedulability of cache-intensive tasksets substantially compared to the cache-agnostic global FP algorithm. Our evaluation also shows that gFPca outperforms the existing cache-aware non- preemptive global FP algorithm in most cases. Through our implementation and empirical evaluation, we demonstrate the feasibility of cache-aware global scheduling with dynamic cache allocation and highlight scenarios in which gFPca is especially useful in practice.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation
We introduce gFPca, a cache-aware global pre-emptive fixed-priority (FP) scheduling algorithm with dynamic cache allocation for multicore systems, and we present its analysis and implementation. We introduce a new overhead-aware analysis that integrates several novel ideas to safely and tightly account for the cache overhead. Our evaluation shows that the proposed overhead-accounting approach is highly accurate, and that gFPca improves the schedulability of cache-intensive tasksets substantially compared to the cache-agnostic global FP algorithm. Our evaluation also shows that gFPca outperforms the existing cache-aware non- preemptive global FP algorithm in most cases. Through our implementation and empirical evaluation, we demonstrate the feasibility of cache-aware global scheduling with dynamic cache allocation and highlight scenarios in which gFPca is especially useful in practice.