基于智能区域选择的超平面高效跟踪

C. Grassl, T. Zinßer, H. Niemann
{"title":"基于智能区域选择的超平面高效跟踪","authors":"C. Grassl, T. Zinßer, H. Niemann","doi":"10.1109/IAI.2004.1300943","DOIUrl":null,"url":null,"abstract":"The main aim of our work is to improve the accuracy of the hyperplane tracker of F. Jurie and M. Dhome (see IEEE Trans. Pattern Anal. and Machine Intelligence, vol.24, no.7, p.996-1000, 2002) for real-time template matching. As the computation time of the initialization of the algorithm depends on the number of points used for estimating the motion of the template, only a subset of points in the tracked template is considered. Traditionally, this subset is determined at random. We present three different methods for selecting points better suited for the hyperplane tracker. We also propose to incorporate color information by working with eigenintensities instead of gray-level intensities, which can greatly improve the estimation accuracy, but only entails a slight increase in computation time. We have carefully evaluated the performance of the proposed methods in experiments with real image sequences.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"51 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficient hyperplane tracking by intelligent region selection\",\"authors\":\"C. Grassl, T. Zinßer, H. Niemann\",\"doi\":\"10.1109/IAI.2004.1300943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of our work is to improve the accuracy of the hyperplane tracker of F. Jurie and M. Dhome (see IEEE Trans. Pattern Anal. and Machine Intelligence, vol.24, no.7, p.996-1000, 2002) for real-time template matching. As the computation time of the initialization of the algorithm depends on the number of points used for estimating the motion of the template, only a subset of points in the tracked template is considered. Traditionally, this subset is determined at random. We present three different methods for selecting points better suited for the hyperplane tracker. We also propose to incorporate color information by working with eigenintensities instead of gray-level intensities, which can greatly improve the estimation accuracy, but only entails a slight increase in computation time. We have carefully evaluated the performance of the proposed methods in experiments with real image sequences.\",\"PeriodicalId\":326040,\"journal\":{\"name\":\"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.\",\"volume\":\"51 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2004.1300943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们工作的主要目的是提高F. Jurie和M. Dhome的超平面跟踪器的精度。模式肛门。《机器智能》,第24卷,第2期。7, p.996-1000, 2002)用于实时模板匹配。由于算法初始化的计算时间取决于用于估计模板运动的点的数量,因此只考虑跟踪模板中点的子集。传统上,这个子集是随机确定的。我们提出了三种不同的方法来选择更适合超平面跟踪器的点。我们还建议通过使用特征强度而不是灰度强度来合并颜色信息,这可以大大提高估计精度,但只需要稍微增加计算时间。我们在真实图像序列的实验中仔细评估了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient hyperplane tracking by intelligent region selection
The main aim of our work is to improve the accuracy of the hyperplane tracker of F. Jurie and M. Dhome (see IEEE Trans. Pattern Anal. and Machine Intelligence, vol.24, no.7, p.996-1000, 2002) for real-time template matching. As the computation time of the initialization of the algorithm depends on the number of points used for estimating the motion of the template, only a subset of points in the tracked template is considered. Traditionally, this subset is determined at random. We present three different methods for selecting points better suited for the hyperplane tracker. We also propose to incorporate color information by working with eigenintensities instead of gray-level intensities, which can greatly improve the estimation accuracy, but only entails a slight increase in computation time. We have carefully evaluated the performance of the proposed methods in experiments with real image sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color interpolation for single CCD color camera A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error Partially observed objects localization with PCA and KPCA models Multi-resolution volumetric reconstruction using labeled regions Frequency implementation of discrete wavelet transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1