{"title":"近红外眼图像中眼镜的检测","authors":"P. Drozdowski, F. Struck, C. Rathgeb, C. Busch","doi":"10.1109/ICB2018.2018.00039","DOIUrl":null,"url":null,"abstract":"Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Detection of Glasses in Near-Infrared Ocular Images\",\"authors\":\"P. Drozdowski, F. Struck, C. Rathgeb, C. Busch\",\"doi\":\"10.1109/ICB2018.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Glasses in Near-Infrared Ocular Images
Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.