近红外眼图像中眼镜的检测

P. Drozdowski, F. Struck, C. Rathgeb, C. Busch
{"title":"近红外眼图像中眼镜的检测","authors":"P. Drozdowski, F. Struck, C. Rathgeb, C. Busch","doi":"10.1109/ICB2018.2018.00039","DOIUrl":null,"url":null,"abstract":"Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Detection of Glasses in Near-Infrared Ocular Images\",\"authors\":\"P. Drozdowski, F. Struck, C. Rathgeb, C. Busch\",\"doi\":\"10.1109/ICB2018.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

眼镜改变了面部图像的外观和视觉感知。此外,在客观指标下,眼镜通常会降低近红外眼部图像的样本质量,从而降低虹膜识别系统的生物识别性能。因此,在自动虹膜识别系统中,眼镜的自动检测是实现高质量、交互式样本采集过程的先决条件之一。本文提出了近红外虹膜图像中眼镜自动检测的三种方法(即统计方法、基于深度学习的方法和基于边缘和反射检测的算法方法)。这些方法在CASIA-IrisV4-Thousand数据集上进行了交叉验证,该数据集包含来自1000个受试者的20000张图像。单独地,它们能够正确分类95-98%的图像,而基于多数投票的三种方法融合的正确分类率(CCR)为99.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Glasses in Near-Infrared Ocular Images
Eyeglasses change the appearance and visual perception of facial images. Moreover, under objective metrics, glasses generally deteriorate the sample quality of near-infrared ocular images and as a consequence can worsen the biometric performance of iris recognition systems. Automatic detection of glasses is therefore one of the prerequisites for a sufficient quality, interactive sample acquisition process in an automatic iris recognition system. In this paper, three approaches (i.e. a statistical method, a deep learning based method and an algorithmic method based on detection of edges and reflections) for automatic detection of glasses in near-infrared iris images are presented. Those approaches are evaluated using cross-validation on the CASIA-IrisV4-Thousand dataset, which contains 20000 images from 1000 subjects. Individually, they are capable of correctly classifying 95-98% of images, while a majority vote based fusion of the three approaches achieves a correct classification rate (CCR) of 99.54%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition Two-Stream Part-Based Deep Representation for Human Attribute Recognition SSBC 2018: Sclera Segmentation Benchmarking Competition Multifactor User Authentication with In-Air-Handwriting and Hand Geometry Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1