Nicole Salomons, Tom Wallenstein, Debasmita Ghose, B. Scassellati
{"title":"家庭机器人教练在帮助人们减少运动错误方面的影响","authors":"Nicole Salomons, Tom Wallenstein, Debasmita Ghose, B. Scassellati","doi":"10.1109/RO-MAN53752.2022.9900722","DOIUrl":null,"url":null,"abstract":"Regular exercise provides many mental and physical health benefits. However, when exercises are done incorrectly, it can lead to injuries. Because the COVID-19 pandemic made it challenging to exercise in communal spaces, the growth of virtual fitness programs was accelerated, putting people at risk of sustaining exercise-related injuries as they received little to no feedback on their exercising techniques. Co-located robots could be one potential enhancement to virtual training programs as they can cause higher learning gains, more compliance, and more enjoyment than non-co-located robots. In this study, we compare the effects of a physically present robot by having a person exercise either with a robot (robot condition) or a video of a robot displayed on a tablet (tablet condition). Participants (N=25) had an exercise system in their homes for two weeks. Participants who exercised with the co-located robot made fewer mistakes than those who exercised with the video-displayed robot. Furthermore, participants in the robot condition reported a higher fitness increase and more motivation to exercise than participants in the tablet condition.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Impact of an In-Home Co-Located Robotic Coach in Helping People Make Fewer Exercise Mistakes\",\"authors\":\"Nicole Salomons, Tom Wallenstein, Debasmita Ghose, B. Scassellati\",\"doi\":\"10.1109/RO-MAN53752.2022.9900722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular exercise provides many mental and physical health benefits. However, when exercises are done incorrectly, it can lead to injuries. Because the COVID-19 pandemic made it challenging to exercise in communal spaces, the growth of virtual fitness programs was accelerated, putting people at risk of sustaining exercise-related injuries as they received little to no feedback on their exercising techniques. Co-located robots could be one potential enhancement to virtual training programs as they can cause higher learning gains, more compliance, and more enjoyment than non-co-located robots. In this study, we compare the effects of a physically present robot by having a person exercise either with a robot (robot condition) or a video of a robot displayed on a tablet (tablet condition). Participants (N=25) had an exercise system in their homes for two weeks. Participants who exercised with the co-located robot made fewer mistakes than those who exercised with the video-displayed robot. Furthermore, participants in the robot condition reported a higher fitness increase and more motivation to exercise than participants in the tablet condition.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of an In-Home Co-Located Robotic Coach in Helping People Make Fewer Exercise Mistakes
Regular exercise provides many mental and physical health benefits. However, when exercises are done incorrectly, it can lead to injuries. Because the COVID-19 pandemic made it challenging to exercise in communal spaces, the growth of virtual fitness programs was accelerated, putting people at risk of sustaining exercise-related injuries as they received little to no feedback on their exercising techniques. Co-located robots could be one potential enhancement to virtual training programs as they can cause higher learning gains, more compliance, and more enjoyment than non-co-located robots. In this study, we compare the effects of a physically present robot by having a person exercise either with a robot (robot condition) or a video of a robot displayed on a tablet (tablet condition). Participants (N=25) had an exercise system in their homes for two weeks. Participants who exercised with the co-located robot made fewer mistakes than those who exercised with the video-displayed robot. Furthermore, participants in the robot condition reported a higher fitness increase and more motivation to exercise than participants in the tablet condition.