{"title":"以异丁烷为工质的海洋热能转换电厂分析","authors":"A. Alkhalidi, M. Qandil, H. Qandil","doi":"10.5383/ijtee.07.01.004","DOIUrl":null,"url":null,"abstract":"The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.","PeriodicalId":429709,"journal":{"name":"International Journal of Thermal and Environmental Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Ocean Thermal Energy Conversion Power Plant using Isobutane as the Working Fluid\",\"authors\":\"A. Alkhalidi, M. Qandil, H. Qandil\",\"doi\":\"10.5383/ijtee.07.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.\",\"PeriodicalId\":429709,\"journal\":{\"name\":\"International Journal of Thermal and Environmental Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5383/ijtee.07.01.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5383/ijtee.07.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Ocean Thermal Energy Conversion Power Plant using Isobutane as the Working Fluid
The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.