持续荷载和热带风化作用下的gfrp粘结RC梁

M. Saha, K. Tan
{"title":"持续荷载和热带风化作用下的gfrp粘结RC梁","authors":"M. Saha, K. Tan","doi":"10.14359/14899","DOIUrl":null,"url":null,"abstract":"Synopsis: A study on glass FRP-bonded RC beams subjected to sustained loading under tropical weathering is reported. Beams were observed for long-term deflections and cracking due to sustained loading over different periods of time, after which they were unloaded and subsequently tested to failure. Beams subjected to outdoor tropical weathering for six months showed 8% larger deflections and 15% larger crack widths compared to those kept under ambient laboratory condition. Under accelerated weathering in a chamber, similar increase in deflections and crack widths were observed. Also, after six months of accelerated weathering, the ultimate flexural strength was about 17% and 12% less for beams bonded with uniand bi-directional glass FRP laminates, respectively, compared to the un-weathered reference beams. The failure mode changed from concrete crushing to FRP rupture with weathering period, indicating the deterioration of FRP laminates. The effect of weathering was more detrimental in the presence of sustained loads.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"GFRP-Bonded RC Beams under Sustained Loading and Tropical Weathering\",\"authors\":\"M. Saha, K. Tan\",\"doi\":\"10.14359/14899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: A study on glass FRP-bonded RC beams subjected to sustained loading under tropical weathering is reported. Beams were observed for long-term deflections and cracking due to sustained loading over different periods of time, after which they were unloaded and subsequently tested to failure. Beams subjected to outdoor tropical weathering for six months showed 8% larger deflections and 15% larger crack widths compared to those kept under ambient laboratory condition. Under accelerated weathering in a chamber, similar increase in deflections and crack widths were observed. Also, after six months of accelerated weathering, the ultimate flexural strength was about 17% and 12% less for beams bonded with uniand bi-directional glass FRP laminates, respectively, compared to the un-weathered reference beams. The failure mode changed from concrete crushing to FRP rupture with weathering period, indicating the deterioration of FRP laminates. The effect of weathering was more detrimental in the presence of sustained loads.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要:本文报道了热带风化作用下玻璃frp粘结RC梁承受持续荷载的研究。在不同时期的持续加载下,观察梁的长期挠曲和开裂,之后卸载并随后进行失效测试。与实验室环境条件下的梁相比,经受室外热带风化6个月的梁挠度增大8%,裂缝宽度增大15%。在室内加速风化下,观察到类似的挠度和裂缝宽度增加。此外,经过六个月的加速风化后,与未风化的参考梁相比,使用单向和双向玻璃钢层压板粘结的梁的极限抗弯强度分别降低了17%和12%。随着风化期的延长,FRP层合板的破坏模式由混凝土破碎转变为FRP断裂,表明FRP层合板的劣化。在持续荷载存在的情况下,风化的影响更为有害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GFRP-Bonded RC Beams under Sustained Loading and Tropical Weathering
Synopsis: A study on glass FRP-bonded RC beams subjected to sustained loading under tropical weathering is reported. Beams were observed for long-term deflections and cracking due to sustained loading over different periods of time, after which they were unloaded and subsequently tested to failure. Beams subjected to outdoor tropical weathering for six months showed 8% larger deflections and 15% larger crack widths compared to those kept under ambient laboratory condition. Under accelerated weathering in a chamber, similar increase in deflections and crack widths were observed. Also, after six months of accelerated weathering, the ultimate flexural strength was about 17% and 12% less for beams bonded with uniand bi-directional glass FRP laminates, respectively, compared to the un-weathered reference beams. The failure mode changed from concrete crushing to FRP rupture with weathering period, indicating the deterioration of FRP laminates. The effect of weathering was more detrimental in the presence of sustained loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FRP Repair Methods for FRP Repair Methods forUnreinforced Masonry Buildings Subject to Cyclic Loading Fire Endurance of Insulated FRP-Strengthened Square Concrete Columns Durability of CFRP Sheet Reinforcement through Exposure Tests An Innovative Hybrid FRP-ConcreteBridge System Innovative Technique for Seismic Upgrade of RC Square Columns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1