非封闭边界河岸湿地水文过程模拟的生态水文模型

IF 2.7 4区 环境科学与生态学 Q2 ECOLOGY Ecohydrology & Hydrobiology Pub Date : 2024-12-01 DOI:10.1016/j.ecohyd.2022.03.001
Xiaoxiao Ju , Cun Du , Fan Feng , Demin Zhou , Xiangzheng Deng
{"title":"非封闭边界河岸湿地水文过程模拟的生态水文模型","authors":"Xiaoxiao Ju ,&nbsp;Cun Du ,&nbsp;Fan Feng ,&nbsp;Demin Zhou ,&nbsp;Xiangzheng Deng","doi":"10.1016/j.ecohyd.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><div><span>It has always been one of the key problems of wetland science to explore the ecological-hydrological interaction mechanism of plants in floodplain wetland. However, the current traditional hydrological model cannot reveal effectively and quantitatively the hydrological process from the spatiotemporal method due to the complex multi-interface features of wetland. In this paper, we constructed innovatively a distributed model for Modelling of the Eco-hydrological process between the Interaction of Surface water &amp; Soil water in Wetlands environment (MEISSW) on the unclosed boundary of Honghe National Nature Reserve (HNNR) in Sanjiang Plain, Northeast China. It is the first effort globally to establish the MEISSW model on the aim at simulating the spatiotemporal transformation characteristics of surface water and soil water in a riparian wetland. Four rainfall events with different hydrological and meteorological characteristics were used to calibrate parameters, and the other three rainfall events were used for verification. Results showed the model was generally credible and highly correlated with the Pearson correlation coefficient (PEARSON) as its 0.76 simulation result on the soil water and 0.64 as the NASH coefficient on the surface water. This model is not only helpful to understand the characteristics of the process interaction between </span>plant ecology and water in the interaction zone, but also useful to quantify and predict the change of ecological base flow within the wetland habitats caused by the human disturbance, and its impact on the spatial pattern of the wetland plant community.</div></div>","PeriodicalId":56070,"journal":{"name":"Ecohydrology & Hydrobiology","volume":"24 4","pages":"Pages 839-848"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eco-hydrological model for modelling hydrological processes in a riparian wetland with the unclosed boundary\",\"authors\":\"Xiaoxiao Ju ,&nbsp;Cun Du ,&nbsp;Fan Feng ,&nbsp;Demin Zhou ,&nbsp;Xiangzheng Deng\",\"doi\":\"10.1016/j.ecohyd.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>It has always been one of the key problems of wetland science to explore the ecological-hydrological interaction mechanism of plants in floodplain wetland. However, the current traditional hydrological model cannot reveal effectively and quantitatively the hydrological process from the spatiotemporal method due to the complex multi-interface features of wetland. In this paper, we constructed innovatively a distributed model for Modelling of the Eco-hydrological process between the Interaction of Surface water &amp; Soil water in Wetlands environment (MEISSW) on the unclosed boundary of Honghe National Nature Reserve (HNNR) in Sanjiang Plain, Northeast China. It is the first effort globally to establish the MEISSW model on the aim at simulating the spatiotemporal transformation characteristics of surface water and soil water in a riparian wetland. Four rainfall events with different hydrological and meteorological characteristics were used to calibrate parameters, and the other three rainfall events were used for verification. Results showed the model was generally credible and highly correlated with the Pearson correlation coefficient (PEARSON) as its 0.76 simulation result on the soil water and 0.64 as the NASH coefficient on the surface water. This model is not only helpful to understand the characteristics of the process interaction between </span>plant ecology and water in the interaction zone, but also useful to quantify and predict the change of ecological base flow within the wetland habitats caused by the human disturbance, and its impact on the spatial pattern of the wetland plant community.</div></div>\",\"PeriodicalId\":56070,\"journal\":{\"name\":\"Ecohydrology & Hydrobiology\",\"volume\":\"24 4\",\"pages\":\"Pages 839-848\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology & Hydrobiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642359322000180\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology & Hydrobiology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642359322000180","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An eco-hydrological model for modelling hydrological processes in a riparian wetland with the unclosed boundary
It has always been one of the key problems of wetland science to explore the ecological-hydrological interaction mechanism of plants in floodplain wetland. However, the current traditional hydrological model cannot reveal effectively and quantitatively the hydrological process from the spatiotemporal method due to the complex multi-interface features of wetland. In this paper, we constructed innovatively a distributed model for Modelling of the Eco-hydrological process between the Interaction of Surface water & Soil water in Wetlands environment (MEISSW) on the unclosed boundary of Honghe National Nature Reserve (HNNR) in Sanjiang Plain, Northeast China. It is the first effort globally to establish the MEISSW model on the aim at simulating the spatiotemporal transformation characteristics of surface water and soil water in a riparian wetland. Four rainfall events with different hydrological and meteorological characteristics were used to calibrate parameters, and the other three rainfall events were used for verification. Results showed the model was generally credible and highly correlated with the Pearson correlation coefficient (PEARSON) as its 0.76 simulation result on the soil water and 0.64 as the NASH coefficient on the surface water. This model is not only helpful to understand the characteristics of the process interaction between plant ecology and water in the interaction zone, but also useful to quantify and predict the change of ecological base flow within the wetland habitats caused by the human disturbance, and its impact on the spatial pattern of the wetland plant community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecohydrology & Hydrobiology
Ecohydrology & Hydrobiology Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.40
自引率
3.80%
发文量
51
期刊介绍: Ecohydrology & Hydrobiology is an international journal that aims to advance ecohydrology as the study of the interplay between ecological and hydrological processes from molecular to river basin scales, and to promote its implementation as an integrative management tool to harmonize societal needs with biosphere potential.
期刊最新文献
Editorial Board Assessing the Impact of Human-Induced and Climate Change-Driven Streamflow Alterations on Freshwater Ecosystems Bathymetric modelling for long-term monitoring of water dynamics of Ramsar-listed lakes using inundation frequency and photon-counting LiDAR data Controllability of soil loss and runoff using soil microorganisms: A review Allometric determinations in the early development of Schoenoplectus californicus to monitor nutrient uptake in constructed wetlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1