{"title":"通过适当的基准测试来理解内存计算趋势","authors":"Naresh R Shanbhag, Saion K. Roy","doi":"10.1109/CICC53496.2022.9772817","DOIUrl":null,"url":null,"abstract":"Since its inception in 2014 [1], the modern version of in-memory computing (IMC) has become an active area of research in integrated circuit design globally for realizing artificial intelligence and machine learning workloads. Since 2018, > 40 IMC-related papers have been published in top circuit design conferences demonstrating significant reductions (>20X) in energy over their digital counterparts especially at the bank-level. Today, bank-level IMC designs have matured but it is not clear what the limiting factors are. This lack of clarity is due to multiple reasons including: 1) the conceptual complexity of IMCs due to its full-stack (devices-to-systems) nature, 2) the presence of a fundamental energy-efficiency vs. compute SNR trade-off due to its analog computations, and 3) the statistical nature of machine learning workloads. The absence of a rigorous benchmarking methodology for IMCs - a problem facing machine learning ICs in general [2] - further obfuscates the underlying trade-offs. As a result, it has become difficult to evaluate the novelty of IMC-related ideas being proposed and therefore gauge the true progress in this exciting field.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comprehending In-memory Computing Trends via Proper Benchmarking\",\"authors\":\"Naresh R Shanbhag, Saion K. Roy\",\"doi\":\"10.1109/CICC53496.2022.9772817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since its inception in 2014 [1], the modern version of in-memory computing (IMC) has become an active area of research in integrated circuit design globally for realizing artificial intelligence and machine learning workloads. Since 2018, > 40 IMC-related papers have been published in top circuit design conferences demonstrating significant reductions (>20X) in energy over their digital counterparts especially at the bank-level. Today, bank-level IMC designs have matured but it is not clear what the limiting factors are. This lack of clarity is due to multiple reasons including: 1) the conceptual complexity of IMCs due to its full-stack (devices-to-systems) nature, 2) the presence of a fundamental energy-efficiency vs. compute SNR trade-off due to its analog computations, and 3) the statistical nature of machine learning workloads. The absence of a rigorous benchmarking methodology for IMCs - a problem facing machine learning ICs in general [2] - further obfuscates the underlying trade-offs. As a result, it has become difficult to evaluate the novelty of IMC-related ideas being proposed and therefore gauge the true progress in this exciting field.\",\"PeriodicalId\":415990,\"journal\":{\"name\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC53496.2022.9772817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehending In-memory Computing Trends via Proper Benchmarking
Since its inception in 2014 [1], the modern version of in-memory computing (IMC) has become an active area of research in integrated circuit design globally for realizing artificial intelligence and machine learning workloads. Since 2018, > 40 IMC-related papers have been published in top circuit design conferences demonstrating significant reductions (>20X) in energy over their digital counterparts especially at the bank-level. Today, bank-level IMC designs have matured but it is not clear what the limiting factors are. This lack of clarity is due to multiple reasons including: 1) the conceptual complexity of IMCs due to its full-stack (devices-to-systems) nature, 2) the presence of a fundamental energy-efficiency vs. compute SNR trade-off due to its analog computations, and 3) the statistical nature of machine learning workloads. The absence of a rigorous benchmarking methodology for IMCs - a problem facing machine learning ICs in general [2] - further obfuscates the underlying trade-offs. As a result, it has become difficult to evaluate the novelty of IMC-related ideas being proposed and therefore gauge the true progress in this exciting field.