基于改进粒子群优化的视频编码块匹配运动估计技术

Deepak Singh
{"title":"基于改进粒子群优化的视频编码块匹配运动估计技术","authors":"Deepak Singh","doi":"10.1109/ETI4.051663.2021.9619265","DOIUrl":null,"url":null,"abstract":"In video coding, the block matching based motion estimation (BMME) schemes by exploiting the uni-modal error surface is quite popular for easy implementation. Though, many real-world video sequences exhibit multiple local minima within the block search window. This research article proposes a pattern based modified particle swarm optimization approach for motion estimation (PMPSO-ME). The population-based evolutionary method; PSO ensures the global optimum solution and avoids trapping into local minima.The proposed technique is analyzed on JM 18.6 reference software of H.264/AVC platform. The proposed technique is evaluated for compared with the state-of-the-art approaches in terms of number of search points, encoding time complexity, Bjontegaard metrics etc.","PeriodicalId":129682,"journal":{"name":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Block Matching Motion Estimation Technique using Modified Particle Swarm Optimization in Video Coding\",\"authors\":\"Deepak Singh\",\"doi\":\"10.1109/ETI4.051663.2021.9619265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In video coding, the block matching based motion estimation (BMME) schemes by exploiting the uni-modal error surface is quite popular for easy implementation. Though, many real-world video sequences exhibit multiple local minima within the block search window. This research article proposes a pattern based modified particle swarm optimization approach for motion estimation (PMPSO-ME). The population-based evolutionary method; PSO ensures the global optimum solution and avoids trapping into local minima.The proposed technique is analyzed on JM 18.6 reference software of H.264/AVC platform. The proposed technique is evaluated for compared with the state-of-the-art approaches in terms of number of search points, encoding time complexity, Bjontegaard metrics etc.\",\"PeriodicalId\":129682,\"journal\":{\"name\":\"2021 Emerging Trends in Industry 4.0 (ETI 4.0)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Emerging Trends in Industry 4.0 (ETI 4.0)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETI4.051663.2021.9619265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETI4.051663.2021.9619265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在视频编码中,利用单模态误差曲面的基于块匹配的运动估计(BMME)方案以其易于实现而广受欢迎。然而,许多真实世界的视频序列在块搜索窗口中表现出多个局部最小值。提出了一种基于模式的改进粒子群优化运动估计方法(PMPSO-ME)。基于种群的进化方法;粒子群算法保证了全局最优解,避免陷入局部最小值。在H.264/AVC平台的JM 18.6参考软件上对该技术进行了分析。从搜索点数量、编码时间复杂度、比昂特加德度量等方面对该方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Block Matching Motion Estimation Technique using Modified Particle Swarm Optimization in Video Coding
In video coding, the block matching based motion estimation (BMME) schemes by exploiting the uni-modal error surface is quite popular for easy implementation. Though, many real-world video sequences exhibit multiple local minima within the block search window. This research article proposes a pattern based modified particle swarm optimization approach for motion estimation (PMPSO-ME). The population-based evolutionary method; PSO ensures the global optimum solution and avoids trapping into local minima.The proposed technique is analyzed on JM 18.6 reference software of H.264/AVC platform. The proposed technique is evaluated for compared with the state-of-the-art approaches in terms of number of search points, encoding time complexity, Bjontegaard metrics etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm Real Time Servo Analysis of Non-Linear Conical Tank Level Control using Root Locus Technique Apply Blockchain Technology for Security of IoT Devices A Highly Efficient Intrusion Detection and Packet Tracking Based on Game Theory Approach Logistic Regression Model for Loan Prediction: A Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1