核池局部子空间分类

Peng Zhang, Jing Peng, C. Domeniconi
{"title":"核池局部子空间分类","authors":"Peng Zhang, Jing Peng, C. Domeniconi","doi":"10.1109/CVPRW.2003.10060","DOIUrl":null,"url":null,"abstract":"We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and compare it against several competing techniques: Principal Component Analysis (PCA), Kernel PCA (KPCA), and linear local pooling in classification problems. We evaluate the classification performance of the nearest-neighbor rule with each subspace representation. The experimental results demonstrate the effectiveness and performance superiority of the kernel pooled subspace method over competing methods such as PCA and KPCA in some classification problems.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Kernel Pooled Local Subspaces for Classification\",\"authors\":\"Peng Zhang, Jing Peng, C. Domeniconi\",\"doi\":\"10.1109/CVPRW.2003.10060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and compare it against several competing techniques: Principal Component Analysis (PCA), Kernel PCA (KPCA), and linear local pooling in classification problems. We evaluate the classification performance of the nearest-neighbor rule with each subspace representation. The experimental results demonstrate the effectiveness and performance superiority of the kernel pooled subspace method over competing methods such as PCA and KPCA in some classification problems.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们研究使用核子空间方法来学习用于分类的低维表示。我们提出了一种核池局部判别子空间方法,并将其与主成分分析(PCA)、核主成分分析(KPCA)和线性局部池化等几种分类方法进行了比较。我们用每个子空间表示来评价最近邻规则的分类性能。实验结果表明,在某些分类问题上,核池子空间方法的有效性和性能优于PCA和KPCA等竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel Pooled Local Subspaces for Classification
We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and compare it against several competing techniques: Principal Component Analysis (PCA), Kernel PCA (KPCA), and linear local pooling in classification problems. We evaluate the classification performance of the nearest-neighbor rule with each subspace representation. The experimental results demonstrate the effectiveness and performance superiority of the kernel pooled subspace method over competing methods such as PCA and KPCA in some classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Factorization Approach for Activity Recognition Optical flow estimation in omnidirectional images using wavelet approach Reckless motion estimation from omnidirectional image and inertial measurements Statistical Error Propagation in 3D Modeling From Monocular Video Learning and Perceptual Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1