Guang-ying Yang, Minghua Zhang, J. Lou, Meng-kai Lu, Ji Wang, Jianke Du
{"title":"功能梯度层对一维声子晶体能带结构的影响","authors":"Guang-ying Yang, Minghua Zhang, J. Lou, Meng-kai Lu, Ji Wang, Jianke Du","doi":"10.1109/SPAWDA48812.2019.9019288","DOIUrl":null,"url":null,"abstract":"In this paper, the propagation of surface acoustic waves in a periodic structure which consists of periodic domain inversion piezoelectric substrate covered by a functionally graded layer is studied. We calculated the band structures using the finite element method. The effects of the gradient variation of material constants on the band structures are discussed in detail. Numerical analysis shows that the band gap shifts to lower frequency and the bandwidth decreases with increase of the positive gradient factor β, whereas the band gap shifts to higher frequency and the bandwidth increase with increase of the negative gradient factor β. Besides, the thickness of the layer also has a significant effect on the first band gap.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Functionally Graded Layer on the Band Structures of One-Dimensional Phononic Crystals\",\"authors\":\"Guang-ying Yang, Minghua Zhang, J. Lou, Meng-kai Lu, Ji Wang, Jianke Du\",\"doi\":\"10.1109/SPAWDA48812.2019.9019288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the propagation of surface acoustic waves in a periodic structure which consists of periodic domain inversion piezoelectric substrate covered by a functionally graded layer is studied. We calculated the band structures using the finite element method. The effects of the gradient variation of material constants on the band structures are discussed in detail. Numerical analysis shows that the band gap shifts to lower frequency and the bandwidth decreases with increase of the positive gradient factor β, whereas the band gap shifts to higher frequency and the bandwidth increase with increase of the negative gradient factor β. Besides, the thickness of the layer also has a significant effect on the first band gap.\",\"PeriodicalId\":208819,\"journal\":{\"name\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWDA48812.2019.9019288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of Functionally Graded Layer on the Band Structures of One-Dimensional Phononic Crystals
In this paper, the propagation of surface acoustic waves in a periodic structure which consists of periodic domain inversion piezoelectric substrate covered by a functionally graded layer is studied. We calculated the band structures using the finite element method. The effects of the gradient variation of material constants on the band structures are discussed in detail. Numerical analysis shows that the band gap shifts to lower frequency and the bandwidth decreases with increase of the positive gradient factor β, whereas the band gap shifts to higher frequency and the bandwidth increase with increase of the negative gradient factor β. Besides, the thickness of the layer also has a significant effect on the first band gap.