关于基于capsnet的晶圆图缺陷模式分类的说明

Itsuki Fujita, Yoshikazu Nagamura, M. Arai, S. Fukumoto
{"title":"关于基于capsnet的晶圆图缺陷模式分类的说明","authors":"Itsuki Fujita, Yoshikazu Nagamura, M. Arai, S. Fukumoto","doi":"10.1109/ATS52891.2021.00019","DOIUrl":null,"url":null,"abstract":"Classification of wafer map defect patterns is important to monitor occurrence and further to assist root cause analysis of manufacturing-process-induced systematic defects. In this study we develop CapsNet-based wafer map defect pattern classifier. CapsNet is a variant of convolutional neural network, which extract features of images as vectors, not as scalars, and is expected to extract features more accurately under fluctuations of locations, angles, and scales of features in input images. Experimental results indicate that, by combining 2-stage (detector and classifier) approach, the proposed scheme shows higher accuracy on WM-811K real wafer map dataset for 8 categories in comparison to the previous work, on average and especially on the categories “Donut” and “Scratch,” which are difficult to accurately categorize by the previous work.","PeriodicalId":432330,"journal":{"name":"2021 IEEE 30th Asian Test Symposium (ATS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Note on CapsNet-Based Wafer Map Defect Pattern Classification\",\"authors\":\"Itsuki Fujita, Yoshikazu Nagamura, M. Arai, S. Fukumoto\",\"doi\":\"10.1109/ATS52891.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of wafer map defect patterns is important to monitor occurrence and further to assist root cause analysis of manufacturing-process-induced systematic defects. In this study we develop CapsNet-based wafer map defect pattern classifier. CapsNet is a variant of convolutional neural network, which extract features of images as vectors, not as scalars, and is expected to extract features more accurately under fluctuations of locations, angles, and scales of features in input images. Experimental results indicate that, by combining 2-stage (detector and classifier) approach, the proposed scheme shows higher accuracy on WM-811K real wafer map dataset for 8 categories in comparison to the previous work, on average and especially on the categories “Donut” and “Scratch,” which are difficult to accurately categorize by the previous work.\",\"PeriodicalId\":432330,\"journal\":{\"name\":\"2021 IEEE 30th Asian Test Symposium (ATS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 30th Asian Test Symposium (ATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS52891.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 30th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS52891.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

晶圆图缺陷模式的分类对于监控系统缺陷的发生和进一步协助制造过程中系统缺陷的根本原因分析具有重要意义。本研究开发了基于capsnet的晶圆图缺陷模式分类器。CapsNet是卷积神经网络的一种变体,它以向量而不是标量的形式提取图像的特征,有望在输入图像中特征的位置、角度和尺度的波动下更准确地提取特征。实验结果表明,通过两阶段(检测器和分类器)相结合的方法,该方法在WM-811K真实晶圆图数据集上对8个类别的分类精度比以往的方法有所提高,特别是在“Donut”和“Scratch”这两个类别上,前者难以准确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Note on CapsNet-Based Wafer Map Defect Pattern Classification
Classification of wafer map defect patterns is important to monitor occurrence and further to assist root cause analysis of manufacturing-process-induced systematic defects. In this study we develop CapsNet-based wafer map defect pattern classifier. CapsNet is a variant of convolutional neural network, which extract features of images as vectors, not as scalars, and is expected to extract features more accurately under fluctuations of locations, angles, and scales of features in input images. Experimental results indicate that, by combining 2-stage (detector and classifier) approach, the proposed scheme shows higher accuracy on WM-811K real wafer map dataset for 8 categories in comparison to the previous work, on average and especially on the categories “Donut” and “Scratch,” which are difficult to accurately categorize by the previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Positive and Negative Extra Clocking of LFSR Seeds for Reduced Numbers of Stored Tests Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors Further Analysis of Laser-induced IR-drop Effective SAT-based Solutions for Generating Functional Sequences Maximizing the Sustained Switching Activity in a Pipelined Processor Application of Residue Sampling to RF/AMS Device Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1