基于DCT和MVDR谱估计的鲁棒语音识别特征提取

S. Seyedin, M. Ahadi
{"title":"基于DCT和MVDR谱估计的鲁棒语音识别特征提取","authors":"S. Seyedin, M. Ahadi","doi":"10.1109/ICOSP.2008.4697205","DOIUrl":null,"url":null,"abstract":"This paper proposes a new noise robust feature extraction method for speech recognition. It is based on the discrete cosine transform and minimum variance distortionless response (MVDR) methods of spectrum estimation and differential power spectrum technique. The large bias drawback of the periodogram method can be solved by using DCT instead of FFT. The MVDR method can also increase the robustness of the features by reducing the variance of the estimated power spectrum. The above method, when evaluated on Test set A of Aurora 2 task, gave a relative improvement of up to 63.3% in recognition accuracy in comparison with MFCC as the baseline.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction based on DCT and MVDR spectral estimation for robust speech recognition\",\"authors\":\"S. Seyedin, M. Ahadi\",\"doi\":\"10.1109/ICOSP.2008.4697205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new noise robust feature extraction method for speech recognition. It is based on the discrete cosine transform and minimum variance distortionless response (MVDR) methods of spectrum estimation and differential power spectrum technique. The large bias drawback of the periodogram method can be solved by using DCT instead of FFT. The MVDR method can also increase the robustness of the features by reducing the variance of the estimated power spectrum. The above method, when evaluated on Test set A of Aurora 2 task, gave a relative improvement of up to 63.3% in recognition accuracy in comparison with MFCC as the baseline.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的语音识别噪声鲁棒特征提取方法。它是基于离散余弦变换和最小方差无失真响应(MVDR)方法的频谱估计和差分功率谱技术。用DCT代替FFT可以解决周期图方法的大偏差缺点。MVDR方法还可以通过减小估计功率谱的方差来提高特征的鲁棒性。在Aurora 2任务的测试集A上对该方法进行了评估,与MFCC作为基准相比,该方法的识别准确率相对提高了63.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction based on DCT and MVDR spectral estimation for robust speech recognition
This paper proposes a new noise robust feature extraction method for speech recognition. It is based on the discrete cosine transform and minimum variance distortionless response (MVDR) methods of spectrum estimation and differential power spectrum technique. The large bias drawback of the periodogram method can be solved by using DCT instead of FFT. The MVDR method can also increase the robustness of the features by reducing the variance of the estimated power spectrum. The above method, when evaluated on Test set A of Aurora 2 task, gave a relative improvement of up to 63.3% in recognition accuracy in comparison with MFCC as the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1