周期加筋板结构声学设计变量的有限元分析

Joseph A. Blochberger
{"title":"周期加筋板结构声学设计变量的有限元分析","authors":"Joseph A. Blochberger","doi":"10.1115/imece2019-10259","DOIUrl":null,"url":null,"abstract":"\n Investigating the acoustic radiation of stiffened plate structures is significant to the advancement of aircraft, automobile, and marine vehicle design. Plate and stiffener design variables affect how the global structure vibrates and radiates sound. The objective of this paper is to provide insight into how sensitive a periodically stiffened plate radiates sound in air with respect to its design variables.\n This paper examines a clamped plate that is periodically stiffened along one direction. Finite element analysis is used to quantify the structural acoustic behavior of the plate subject to a harmonic point load at the plate’s center. Fourier transforms are performed along the plate’s surface to reveal the wavenumber content of the plate. Lastly, radiated sound power from the plate surface is computed.\n A baseline plate without stiffeners is used for finite element modeling validation. Next, periodically spaced beams used for plate stiffening are inserted and varied in thickness. In addition, the plate thickness is also varied. Varying the plate thickness and the stiffener thickness provides insight to each design variable’s contribution to vibration and radiated sound power. The quantified findings from these parametric case studies serve as an insight into the structural acoustic performance of periodically stiffened structures.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Structural Acoustic Design Variables for a Periodically Stiffened Plate Using the Finite Element Method\",\"authors\":\"Joseph A. Blochberger\",\"doi\":\"10.1115/imece2019-10259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Investigating the acoustic radiation of stiffened plate structures is significant to the advancement of aircraft, automobile, and marine vehicle design. Plate and stiffener design variables affect how the global structure vibrates and radiates sound. The objective of this paper is to provide insight into how sensitive a periodically stiffened plate radiates sound in air with respect to its design variables.\\n This paper examines a clamped plate that is periodically stiffened along one direction. Finite element analysis is used to quantify the structural acoustic behavior of the plate subject to a harmonic point load at the plate’s center. Fourier transforms are performed along the plate’s surface to reveal the wavenumber content of the plate. Lastly, radiated sound power from the plate surface is computed.\\n A baseline plate without stiffeners is used for finite element modeling validation. Next, periodically spaced beams used for plate stiffening are inserted and varied in thickness. In addition, the plate thickness is also varied. Varying the plate thickness and the stiffener thickness provides insight to each design variable’s contribution to vibration and radiated sound power. The quantified findings from these parametric case studies serve as an insight into the structural acoustic performance of periodically stiffened structures.\",\"PeriodicalId\":197121,\"journal\":{\"name\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究加劲板结构的声辐射对飞机、汽车和船舶设计的进步具有重要意义。板和加劲板的设计变量会影响整体结构的振动和声辐射。本文的目的是提供洞察如何敏感的周期性加强板辐射声在空气中相对于它的设计变量。本文研究了沿一个方向周期性加筋的夹紧板。采用有限元分析方法定量分析了受中心谐波点荷载作用下板的结构声学特性。沿着平板表面进行傅里叶变换以揭示平板的波数含量。最后,计算了平板表面的辐射声功率。采用无加筋基线板进行有限元建模验证。接下来,用于板加强的周期性间隔梁插入和厚度变化。此外,板材厚度也各不相同。通过改变板厚和加劲板厚度,可以了解每个设计变量对振动和辐射声功率的影响。这些参数化案例研究的量化结果有助于深入了解周期加筋结构的声学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Structural Acoustic Design Variables for a Periodically Stiffened Plate Using the Finite Element Method
Investigating the acoustic radiation of stiffened plate structures is significant to the advancement of aircraft, automobile, and marine vehicle design. Plate and stiffener design variables affect how the global structure vibrates and radiates sound. The objective of this paper is to provide insight into how sensitive a periodically stiffened plate radiates sound in air with respect to its design variables. This paper examines a clamped plate that is periodically stiffened along one direction. Finite element analysis is used to quantify the structural acoustic behavior of the plate subject to a harmonic point load at the plate’s center. Fourier transforms are performed along the plate’s surface to reveal the wavenumber content of the plate. Lastly, radiated sound power from the plate surface is computed. A baseline plate without stiffeners is used for finite element modeling validation. Next, periodically spaced beams used for plate stiffening are inserted and varied in thickness. In addition, the plate thickness is also varied. Varying the plate thickness and the stiffener thickness provides insight to each design variable’s contribution to vibration and radiated sound power. The quantified findings from these parametric case studies serve as an insight into the structural acoustic performance of periodically stiffened structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibration Absorption in a Nonlinear Metamaterial Beam Incorporating Shape Memory Alloys Mechanical Design and Development of a Payload for Structural Health Monitoring Experiments on the International Space Station Ultrasonic Characterization of the Elastic Constants in an Aging Ti-6Al-4V ELI Alloy An Experimental Approach in Defect Detection of a Single Row Ball Bearing Using Noise Generation Signal Development and Design of the Dynamic Vibration Absorber Using Magneto-Rheological Elastomer for the Weight and Power Consumption Saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1